Longinos Sotirios Nik, Hazlett Randy
Department of Petroleum Engineering, School of Mining and Geosciences, Nazarbayev University, Astana, Kazakhstan.
Sci Rep. 2024 Jan 2;14(1):160. doi: 10.1038/s41598-023-50223-z.
Cryogenic fracturing using liquid nitrogen (LN) is a novel stimulation technology that enhances porosity, permeability, and rock-fluid contact area in subsurface formations targetted for geothermal energy extraction. In our experimental study, granite cores collected from the Zhylgyz region in South Kazakhstan were equilibrated at various elevated temperatures before treatments involving LN exposure time. Compression, Brazilian, and fracture toughness tests were performed on granite with starting temperatures ranging from 100 to 500 °C to quantify the impact of initial temperature on cryogenic fracturing and to compare with baseline geomechanical tests at 50 °C without LN exposure. The results show that LN cooling of hot granite induces mechanical rock failure and permeability enhancement. Moreover, the degree of thermo-fracturing augments with initial granite temperature, total freezing time, and number of freezing-thawing cycles. The peak load before failure of granite specimens, both in compression and Brazilian tests, reduces with the increased sample temperature difference and length of LN treatment. The fracture toughness of our semi-circular bend (SCB) LN-treated specimens diminished with increasing temperature difference between granite and boiling point. In both experimental LN treatment processes, the specimens with an initial temperature of 500 °C before LN treatment formed many new fissures and extensions of pre-existing ones, showing that the plastic behavior is augmented. While cryo-fracturing experimental confirmation is recommended with site-specific samples in planning geothermal operations, these results in our work indicate a threshold downhole temperature, e.g., > 300 °C, for enhanced stimulation outcomes.
使用液氮(LN)进行低温压裂是一种新型增产技术,可提高地下地热开采目标地层的孔隙度、渗透率和岩石-流体接触面积。在我们的实验研究中,从哈萨克斯坦南部的日尔吉斯地区采集的花岗岩岩心在涉及液氮暴露时间的处理之前,先在不同的高温下进行了平衡。对起始温度范围为100至500°C的花岗岩进行了压缩、巴西劈裂和断裂韧性测试,以量化初始温度对低温压裂的影响,并与未暴露于液氮的50°C下的基线地质力学测试进行比较。结果表明,热花岗岩的液氮冷却会导致岩石机械破坏和渗透率提高。此外,热压裂程度会随着花岗岩初始温度、总冷冻时间和冻融循环次数的增加而增大。在压缩和巴西劈裂试验中,花岗岩试样破坏前的峰值载荷会随着样品温差和液氮处理时间的增加而降低。我们经液氮处理的半圆弯曲(SCB)试样的断裂韧性会随着花岗岩与沸点之间温差的增大而降低。在两个实验性液氮处理过程中,液氮处理前初始温度为500°C的试样形成了许多新裂缝以及既有裂缝的延伸,表明塑性行为增强。虽然在规划地热作业时建议使用特定场地的样品对低温压裂进行实验验证,但我们工作中的这些结果表明,井下温度存在一个阈值,例如>300°C时,增产效果会增强。