Suppr超能文献

床旁中性粒细胞和单核细胞表面标志物可在 30 分钟内区分急诊的细菌感染和病毒感染。

Point-of-care neutrophil and monocyte surface markers differentiate bacterial from viral infections at the emergency department within 30 min.

机构信息

Department of Respiratory Medicine, University Medical Centre Utrecht, Utrecht University, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands.

Centre for Translational Immunology, University Medical Centre Utrecht, Utrecht University, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands.

出版信息

J Leukoc Biol. 2024 Mar 29;115(4):714-722. doi: 10.1093/jleuko/qiad163.

Abstract

Rapid discrimination between viral and bacterial infections in a point-of-care setting will improve clinical outcome. Expression of CD64 on neutrophils (neuCD64) increases during bacterial infections, whereas expression of CD169 on classical monocytes (cmCD169) increases during viral infections. The diagnostic value of automated point-of-care neuCD64 and cmCD169 analysis was assessed for detecting bacterial and viral infections at the emergency department. Additionally, their value as input for machine learning models was studied. A prospective observational cohort study in patients suspected of infection was performed at an emergency department. A fully automated point-of-care flow cytometer measured neuCD64, cmCD169, and additional leukocyte surface markers. Flow cytometry data were gated using the FlowSOM algorithm. Bacterial and viral infections were assessed in standardized clinical care. The sole and combined diagnostic value of the markers was investigated. Clustering based on unsupervised machine learning identified unique patient clusters. Eighty-six patients were included. Thirty-five had a bacterial infection, 30 had a viral infection, and 21 had no infection. neuCD64 was increased in bacterial infections (P < 0.001), with an area under the receiver operating characteristic curve (AUROC) of 0.73. cmCD169 was higher in virally infected patients (P < 0.001; AUROC 0.79). Multivariate analyses incorporating additional markers increased the AUROC for bacterial and viral infections to 0.86 and 0.93, respectively. The additional clustering identified 4 distinctive patient clusters based on infection type and outcome. Automated neuCD64 and cmCD169 determination can discriminate between bacterial and viral infections. These markers can be determined within 30 min, allowing fast infection diagnostics in the acute clinical setting.

摘要

在即时护理环境中快速区分病毒和细菌感染将改善临床结果。中性粒细胞上的 CD64(neuCD64)表达在细菌感染期间增加,而经典单核细胞上的 CD169(cmCD169)表达在病毒感染期间增加。在急诊部门评估了自动即时护理 neuCD64 和 cmCD169 分析对检测细菌和病毒感染的诊断价值。此外,还研究了它们作为机器学习模型输入的价值。在急诊部门对疑似感染的患者进行了前瞻性观察队列研究。全自动即时护理流式细胞仪测量了 neuCD64、cmCD169 和其他白细胞表面标志物。使用 FlowSOM 算法对流式细胞术数据进行门控。在标准化临床护理中评估了细菌和病毒感染。研究了标志物的单独和联合诊断价值。基于无监督机器学习的聚类确定了独特的患者聚类。纳入了 86 名患者。35 人患有细菌性感染,30 人患有病毒性感染,21 人没有感染。neuCD64 在细菌性感染中增加(P < 0.001),其受试者工作特征曲线(AUROC)为 0.73。cmCD169 在病毒感染患者中更高(P < 0.001;AUROC 0.79)。纳入其他标志物的多变量分析将细菌性和病毒性感染的 AUROC 分别提高到 0.86 和 0.93。额外的聚类根据感染类型和结果确定了 4 个独特的患者聚类。自动 neuCD64 和 cmCD169 测定可区分细菌和病毒感染。这些标志物可在 30 分钟内确定,允许在急性临床环境中快速进行感染诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验