文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

超声激活载药脂质体用于高效癌症靶向治疗,无化疗引起的副作用。

Ultrasound-activated prodrug-loaded liposome for efficient cancer targeting therapy without chemotherapy-induced side effects.

机构信息

Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China.

Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China.

出版信息

J Nanobiotechnology. 2024 Jan 3;22(1):2. doi: 10.1186/s12951-023-02195-5.


DOI:10.1186/s12951-023-02195-5
PMID:38169390
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10763105/
Abstract

BACKGROUND: Off-targeted distribution of chemotherapeutic drugs causes severe side effects, further leading to poor prognosis and patient compliance. Ligand/receptor-mediated targeted drug delivery can improve drug accumulation in the tumor but it always attenuated by protein corona barriers. RESULTS: To address these problems, a radically different strategy is proposed that can leave the off-targeted drugs inactive but activate the tumor-distributed drugs for cancer-targeting therapy in a tumor microenvironment-independent manner. The feasibility and effectiveness of this strategy is demonstrated by developing an ultrasound (US)-activated prodrug-loaded liposome (CPBSN38L) comprising the sonosensitizer chlorin e6 (Ce6)-modified lipids and the prodrug of pinacol boronic ester-conjugated SN38 (PBSN38). Once CPBSN38L is accumulated in the tumor and internalized into the cancer cells, under US irradiation, the sonosensitizer Ce6 rapidly induces extensive production of intracellular reactive oxygen species (ROS), thereby initiating a cascade amplified ROS-responsive activation of PBSN38 to release the active SN38 for inducing cell apoptosis. If some of the injected CPBSN38L is distributed into normal tissues, the inactive PBSN38 exerts no pharmacological activity on normal cells. CPBSN38L exhibited strong anticancer activity in multiple murine tumor models of colon adenocarcinoma and hepatocellular carcinoma with no chemotherapy-induced side effects, compared with the standard first-line anticancer drugs irinotecan and topotecan. CONCLUSIONS: This study established a side-effect-evitable, universal, and feasible strategy for cancer-targeting therapy.

摘要

背景:化疗药物的非靶向分布会导致严重的副作用,进而导致预后不良和患者顺应性差。配体/受体介导的靶向药物递送可以提高肿瘤内的药物积累,但它总是被蛋白质冠屏障减弱。

结果:为了解决这些问题,提出了一种截然不同的策略,可以使非靶向药物失活,但在肿瘤微环境独立的方式下激活肿瘤分布的药物进行癌症靶向治疗。通过开发一种包含声敏剂氯己定(Ce6)修饰脂质和硼酸酯键合 SN38 的前药(PBSN38)的超声(US)激活前药负载脂质体(CPBSN38L),证明了这种策略的可行性和有效性。一旦 CPBSN38L 在肿瘤中积累并被内化到癌细胞中,在超声照射下,声敏剂 Ce6 迅速诱导大量细胞内活性氧(ROS)的产生,从而引发 PBSN38 的级联放大 ROS 响应激活,释放活性 SN38 诱导细胞凋亡。如果注射的 CPBSN38L 中的一部分分布到正常组织中,非活性的 PBSN38 对正常细胞没有药理活性。与标准一线抗癌药物伊立替康和拓扑替康相比,CPBSN38L 在结直肠腺癌和肝细胞癌的多种小鼠肿瘤模型中表现出强烈的抗癌活性,且没有化疗引起的副作用。

结论:本研究建立了一种可避免副作用的、通用的、可行的癌症靶向治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd8b/10763105/a9d216067066/12951_2023_2195_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd8b/10763105/e46e1947ea62/12951_2023_2195_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd8b/10763105/b92e1628c0d4/12951_2023_2195_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd8b/10763105/a46b76ebf09e/12951_2023_2195_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd8b/10763105/e39a6df589b7/12951_2023_2195_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd8b/10763105/a9d216067066/12951_2023_2195_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd8b/10763105/e46e1947ea62/12951_2023_2195_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd8b/10763105/b92e1628c0d4/12951_2023_2195_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd8b/10763105/a46b76ebf09e/12951_2023_2195_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd8b/10763105/e39a6df589b7/12951_2023_2195_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd8b/10763105/a9d216067066/12951_2023_2195_Fig6_HTML.jpg

相似文献

[1]
Ultrasound-activated prodrug-loaded liposome for efficient cancer targeting therapy without chemotherapy-induced side effects.

J Nanobiotechnology. 2024-1-3

[2]
pH/ROS dual-responsive supramolecular polypeptide prodrug nanomedicine based on host-guest recognition for cancer therapy.

Acta Biomater. 2022-4-15

[3]
ROS-sensitive biomimetic nanocarriers modulate tumor hypoxia for synergistic photodynamic chemotherapy.

Biomater Sci. 2019-8-20

[4]
Multi-stimuli responsive polymeric prodrug micelles for combined chemotherapy and photodynamic therapy.

J Mater Chem B. 2020-6-24

[5]
Oxygen-producing catalase-based prodrug nanoparticles overcoming resistance in hypoxia-mediated chemo-photodynamic therapy.

Acta Biomater. 2020-8

[6]
Light-Activated Monomethyl Auristatin E Prodrug Nanoparticles for Combinational Photo-Chemotherapy of Pancreatic Cancer.

Molecules. 2022-4-14

[7]
A prodrug hydrogel with tumor microenvironment and near-infrared light dual-responsive action for synergistic cancer immunotherapy.

Acta Biomater. 2022-9-1

[8]
Novel lipophilic SN38 prodrug forming stable liposomes for colorectal carcinoma therapy.

Int J Nanomedicine. 2019-7-12

[9]
Self-Activating Therapeutic Nanoparticle: A Targeted Tumor Therapy Using Reactive Oxygen Species Self-Generation and Switch-on Drug Release.

ACS Appl Mater Interfaces. 2021-7-7

[10]
Bone-Targeting Prodrug Mesoporous Silica-Based Nanoreactor with Reactive Oxygen Species Burst for Enhanced Chemotherapy.

ACS Appl Mater Interfaces. 2020-8-5

引用本文的文献

[1]
Antibody-functionalized lipid nanocarriers for RNA-based cancer gene therapy: advances and challenges in targeted delivery.

Nanoscale Adv. 2025-8-22

[2]
Application of smart responsive nanomaterials in the theranostics of gastrointestinal malignancies: Current status and future perspectives.

Coord Chem Rev. 2025-7-15

[3]
Ultrasound-activated carrier-free nanoprodrugs enhanced universality and efficiency of solid tumor-targeting chemotherapy.

Bioact Mater. 2025-5-2

[4]
Liposomes for Magnetic Resonance Image-Guided Drug Delivery; Lipid Chain Length Affects Drug Release and MRI Relaxivity.

Molecules. 2025-4-11

[5]
Liposomal Formulations: A Recent Update.

Pharmaceutics. 2024-12-30

[6]
Biomimetic nanocarriers in cancer therapy: based on intercellular and cell-tumor microenvironment communication.

J Nanobiotechnology. 2024-10-6

本文引用的文献

[1]
Unraveling the Plasma Protein Corona by Ultrasonic Cavitation Augments Active-Transporting of Liposome in Solid Tumor.

Adv Mater. 2023-3

[2]
Anticancer Nanotherapeutics in Clinical Trials: The Work behind Clinical Translation of Nanomedicine.

Int J Mol Sci. 2022-11-2

[3]
Neoantigen T-Cell Receptor Gene Therapy in Pancreatic Cancer.

N Engl J Med. 2022-6-2

[4]
Activation of STING in the pancreatic tumor microenvironment: A novel therapeutic opportunity.

Cancer Lett. 2022-7-10

[5]
A decade of checkpoint blockade immunotherapy in melanoma: understanding the molecular basis for immune sensitivity and resistance.

Nat Immunol. 2022-5

[6]
Ultrasound-Enhanced Reactive Oxygen Species Responsive Charge-Reversal Polymeric Nanocarriers for Efficient Pancreatic Cancer Gene Delivery.

ACS Appl Mater Interfaces. 2022-1-19

[7]
Targeted drug delivery strategies for precision medicines.

Nat Rev Mater. 2021-4

[8]
Long-Term Outcomes With Nivolumab Plus Ipilimumab or Nivolumab Alone Versus Ipilimumab in Patients With Advanced Melanoma.

J Clin Oncol. 2022-1-10

[9]
Improved prediction of immune checkpoint blockade efficacy across multiple cancer types.

Nat Biotechnol. 2022-4

[10]
Emerging strategies in developing multifunctional nanomaterials for cancer nanotheranostics.

Adv Drug Deliv Rev. 2021-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索