Suppr超能文献

在BB84协议中使用伪随机函数进行基的选择。

Bases selection with pseudo-random functions in BB84 scheme.

作者信息

Dervisevic Emir, Voznak Miroslav, Mehic Miralem

机构信息

Department of Telecommunications, Faculty of Electrical Engineering, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina.

Department of Telecommunications, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, Ostrava, 708 00, Czechia.

出版信息

Heliyon. 2023 Dec 11;10(1):e23578. doi: 10.1016/j.heliyon.2023.e23578. eCollection 2024 Jan 15.

Abstract

Because the spectrum of services available in modern telecommunication networks is constantly expanding, security has become increasingly important. Simultaneously, in an era of constant progress in mathematics and computing, the security of existing cryptographic solutions becomes questionable. Quantum Key Distribution (QKD) is a promising secret key agreement primitive that enables long-awaited practical Information-Theoretical Secure (ITS) communications. The key generation rate, however, is one of the limitations of its widespread application to secure high throughput data flows. This paper addresses the aforementioned limitation by employing perfectly correlated bases selection defined by the output of Pseudo-Random Functions based on the keyed-Hash Message Authentication Code construction. In theory, the proposed variant of the BB84 scheme is ITS, reduces memory requirements, and reduces communication overhead during the post-processing stage. It can benefit QKD networks as a service by increasing capacity and accommodating users with varying security needs.

摘要

由于现代电信网络中可用服务的范围在不断扩大,安全性变得越来越重要。同时,在数学和计算不断进步的时代,现有加密解决方案的安全性受到质疑。量子密钥分发(QKD)是一种很有前景的秘密密钥协商原语,它实现了人们期待已久的实用信息理论安全(ITS)通信。然而,密钥生成率是其广泛应用于保护高吞吐量数据流的限制之一。本文通过采用基于带密钥哈希消息认证码构造的伪随机函数输出所定义的完全相关基选择,解决了上述限制。理论上,所提出的BB84方案变体是信息理论安全的,减少了内存需求,并减少了后处理阶段的通信开销。它可以通过增加容量和满足具有不同安全需求的用户,使QKD网络作为一种服务受益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c608/10761772/19d828f597c3/gr001.jpg

相似文献

1
Bases selection with pseudo-random functions in BB84 scheme.
Heliyon. 2023 Dec 11;10(1):e23578. doi: 10.1016/j.heliyon.2023.e23578. eCollection 2024 Jan 15.
2
Enhanced BB84 quantum cryptography protocol for secure communication in wireless body sensor networks for medical applications.
Pers Ubiquitous Comput. 2023;27(3):875-885. doi: 10.1007/s00779-021-01546-z. Epub 2021 Mar 18.
3
Short Review on Quantum Key Distribution Protocols.
Adv Exp Med Biol. 2017;988:149-157. doi: 10.1007/978-3-319-56246-9_12.
4
Security analysis of quantum key distribution on passive optical networks.
Opt Express. 2017 May 15;25(10):11894-11909. doi: 10.1364/OE.25.011894.
5
Application and Development of QKD-Based Quantum Secure Communication.
Entropy (Basel). 2023 Apr 6;25(4):627. doi: 10.3390/e25040627.
7
Comparative Experiments of V2X Security Protocol Based on Hash Chain Cryptography.
Sensors (Basel). 2020 Oct 8;20(19):5719. doi: 10.3390/s20195719.
8
High-Speed Variable Polynomial Toeplitz Hash Algorithm Based on FPGA.
Entropy (Basel). 2023 Apr 11;25(4):642. doi: 10.3390/e25040642.
9
Authentication of variable length messages in quantum key distribution.
EPJ Quantum Technol. 2022;9(1):8. doi: 10.1140/epjqt/s40507-022-00127-0. Epub 2022 Feb 16.
10
Counterfactual quantum key distribution with untrusted detectors.
Heliyon. 2023 Feb 13;9(2):e13719. doi: 10.1016/j.heliyon.2023.e13719. eCollection 2023 Feb.

本文引用的文献

1
Fast single-photon detectors and real-time key distillation enable high secret-key-rate quantum key distribution systems.
Nat Photonics. 2023;17(5):422-426. doi: 10.1038/s41566-023-01168-2. Epub 2023 Mar 9.
2
Continuous entanglement distribution over a transnational 248 km fiber link.
Nat Commun. 2022 Oct 17;13(1):6134. doi: 10.1038/s41467-022-33919-0.
3
Quantum Key Distribution over 658 km Fiber with Distributed Vibration Sensing.
Phys Rev Lett. 2022 May 6;128(18):180502. doi: 10.1103/PhysRevLett.128.180502.
4
SDQaaS: software defined networking for quantum key distribution as a service.
Opt Express. 2019 Mar 4;27(5):6892-6909. doi: 10.1364/OE.27.006892.
5
Satellite-to-ground quantum key distribution.
Nature. 2017 Sep 7;549(7670):43-47. doi: 10.1038/nature23655. Epub 2017 Aug 9.
6
Satellite-based entanglement distribution over 1200 kilometers.
Science. 2017 Jun 16;356(6343):1140-1144. doi: 10.1126/science.aan3211.
7
A quantum access network.
Nature. 2013 Sep 5;501(7465):69-72. doi: 10.1038/nature12493.
9
Quantum key distribution with high loss: toward global secure communication.
Phys Rev Lett. 2003 Aug 1;91(5):057901. doi: 10.1103/PhysRevLett.91.057901.
10
Quantum cryptography with coherent states.
Phys Rev A. 1995 Mar;51(3):1863-1869. doi: 10.1103/physreva.51.1863.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验