Gutiérrez Eduardo L, Godoy Agustín A, Brusau Elena V, Vega Daniel, Narda Griselda E, Suárez Sebastián, Di Salvo Florencia
INQUISAL-CONICET, Área de Química Física, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera CP 5700 San Luis Argentina
Instituto de Investigaciones en Tecnología Química (INTEQUI), Área de Química General e Inorgánica "Dr G. F. Puelles", Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis Almte. Brown 1500-1402, D5700APA, Chacabuco y Pedernera CP 5700 San Luis Argentina.
RSC Adv. 2024 Jan 2;14(1):181-192. doi: 10.1039/d3ra07422f.
The design mebendazole (MBZ) multicomponent systems is important to obtain new materials that incorporate the API (active pharmaceutical ingredient) with better thermal stability, avoiding the interconversion of desmotropes. Interestingly, the presence of water molecules in the mebendazolium mesylate monohydrate prevents the formation of the (8) supramolecular synthon, found in all mebendazolium salts with polyatomic counterions. Here, we designed a new mebendazolium mesylate anhydrous salt based on statistical scrutiny of all mebendazole crystal structures identified in the literature and an exhaustive analysis of the conformational and geometrical requirements for the supramolecular assembly. The synthesis of this new salt and its solid-state characterization through single-crystal X-ray diffraction and complementary techniques are presented. As expected, mebendazole recrystallization in methanol with methanesulfonic acid - a Food and Drug Administration accepted coformer - in the absence of water yields a mesylate anhydrous salt with 1 : 1 stoichiometry. This new salt crystallizes in the 222 (19) space group. The main intermolecular interactions found in the crystal structure are the hydrogen bonds that form a (8) supramolecular motif that assembles the ionic pairs. Additional non-classical H-bond, as well as π⋯π and carbonyl⋯cation interactions, contribute to the final stabilization of the crystal packing. This new salt is stable up to 205 °C when it undergoes the endothermic loss of the ester moiety to yield 2-amino-5-benzoylbenzimidazole. Moreover, preliminary dissolution experiments in aqueous 0.1 mol L HCl suggest an apparent solubility of mebendazolium mesylate anhydride 2.67 times higher than that of the preferred for pharmaceutical formulations MBZ form C.
设计甲苯咪唑(MBZ)多组分体系对于获得将活性药物成分(API)结合且具有更好热稳定性的新材料很重要,可避免互变异构体的相互转化。有趣的是,甲磺酸甲苯咪唑鎓一水合物中水分子的存在阻止了(8)超分子合成子的形成,而在所有含多原子抗衡离子的甲苯咪唑鎓盐中都发现了该合成子。在此,我们基于对文献中鉴定出的所有甲苯咪唑晶体结构的统计审查以及对超分子组装的构象和几何要求的详尽分析,设计了一种新的无水甲磺酸甲苯咪唑鎓盐。本文介绍了这种新盐的合成及其通过单晶X射线衍射和补充技术进行的固态表征。正如预期的那样,甲苯咪唑在甲醇中与甲磺酸(一种美国食品药品监督管理局认可的共形剂)重结晶,在无水条件下生成化学计量比为1∶1的无水甲磺酸盐。这种新盐在222(19)空间群中结晶。晶体结构中发现的主要分子间相互作用是形成组装离子对的(8)超分子基序的氢键。额外的非经典氢键以及π⋯π和羰基⋯阳离子相互作用有助于晶体堆积的最终稳定。这种新盐在高达205°C时稳定,此时它经历酯部分的吸热损失,生成2-氨基-5-苯甲酰基苯并咪唑。此外,在0.1 mol/L盐酸水溶液中的初步溶解实验表明,无水甲磺酸甲苯咪唑鎓的表观溶解度比药物制剂中首选的MBZ晶型C高2.67倍。