Suppr超能文献

基于U-Net卷积神经网络的相干多普勒激光雷达数据去噪

Denoising coherent Doppler lidar data based on a U-Net convolutional neural network.

作者信息

Song Yiming, Han Yuli, Su Zhaowang, Chen Chong, Sun Dongsong, Chen Tingdi, Xue Xianghui

出版信息

Appl Opt. 2024 Jan 1;63(1):275-282. doi: 10.1364/AO.506574.

Abstract

The coherent Doppler wind lidar (CDWL) has long been thought to be the most suitable technique for wind remote sensing in the atmospheric boundary layer (ABL) due to its compact size, robust performance, and low-cost properties. However, as the coherent lidar exploits the Mie scattering from aerosol particles, the signal intensity received by the lidar is highly affected by the concentration of aerosols. Unlike air molecules, the concentration of aerosol varies greatly with time and weather, and decreases dramatically with altitude. As a result, the performance of the coherent lidar fluctuates greatly with time, and the detection range is mostly confined within the planetary boundary layer. The original data collected by the lidar are first transformed into a spectrogram and then processed into radial wind velocities utilizing algorithms such as a spectral centroid. When the signal-to-noise ratio (SNR) is low, these classic algorithms fail to retrieve the wind speed stably. In this work, a radial wind velocity retrieving algorithm based on a trained convolutional neural network (CNN) U-Net is proposed for denoising and an accurate estimate of the Doppler shift in a low-SNR regime. The advantage of the CNN is first discussed qualitatively and then proved by means of a numerical simulation. Simulated spectrum data are used for U-Net training and testing, which show that the U-Net is not only more accurate than the spectral centroid but also achieves a further detection range. Finally, joint observation data from the lidar and radiosonde show excellent agreement, demonstrating that the U-Net-based retrieving algorithm has superior performance over the traditional spectral centroid method both in accuracy and detection range.

摘要

相干多普勒测风激光雷达(CDWL)长期以来一直被认为是大气边界层(ABL)中风遥感最适用的技术,因为其体积紧凑、性能稳健且成本低廉。然而,由于相干激光雷达利用气溶胶粒子的米氏散射,激光雷达接收到的信号强度受气溶胶浓度的影响很大。与空气分子不同,气溶胶浓度随时间和天气变化很大,并且随高度急剧下降。因此,相干激光雷达的性能随时间波动很大,探测范围大多局限于行星边界层内。激光雷达收集的原始数据首先被转换为频谱图,然后利用诸如谱重心等算法处理成径向风速。当信噪比(SNR)较低时,这些经典算法无法稳定地反演风速。在这项工作中,提出了一种基于训练好的卷积神经网络(CNN)U-Net的径向风速反演算法,用于在低信噪比情况下进行去噪和准确估计多普勒频移。首先定性讨论了CNN的优势,然后通过数值模拟进行了证明。使用模拟光谱数据进行U-Net训练和测试,结果表明U-Net不仅比谱重心更准确,而且实现了更远的探测范围。最后,激光雷达和无线电探空仪的联合观测数据显示出极好的一致性,表明基于U-Net的反演算法在精度和探测范围方面均优于传统的谱重心方法。

相似文献

1
Denoising coherent Doppler lidar data based on a U-Net convolutional neural network.
Appl Opt. 2024 Jan 1;63(1):275-282. doi: 10.1364/AO.506574.
3
Pulse Accumulation Approach Based on Signal Phase Estimation for Doppler Wind Lidar.
Sensors (Basel). 2024 Mar 23;24(7):2062. doi: 10.3390/s24072062.
8
Inversion probability enhancement of all-fiber CDWL by noise modeling and robust fitting.
Opt Express. 2020 Sep 28;28(20):29662-29675. doi: 10.1364/OE.401054.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验