Suppr超能文献

通过二次对称梯度折射率透镜的半解析有限光线追迹

Semi-analytical finite ray-tracing through the quadratic symmetric GRIN lens.

作者信息

Flynn Conor, Goncharov Alexander V

出版信息

Appl Opt. 2024 Jan 1;63(1):290-298. doi: 10.1364/AO.504305.

Abstract

The propagation of light within a gradient index (GRIN) media can be analyzed with the use of differential equations for a given non-homogenous refractive index profile. Numerical methods are often necessary to perform ray-tracing in GRIN media; however, analytical solutions exist for several types of GRIN lenses. In this paper, paraxial and non-paraxial differential equations are derived to calculate the ray path in a GRIN lens. It is shown that the paraxial equation has an analytical solution for a GRIN media with a quadratic profile within the paraxial region. The analytical solution can be obtained by using Legendre polynomials or by the Frobenius method involving a power series. Using the Legendre or Frobenius solution, one can calculate the refractive indices along the ray path. A new recursive relationship is proposed to map the trajectory of light at finite heights. To illustrate the finite ray-tracing method utilizing a non-paraxial differential equation, two lenses (with spherical and elliptical iso-indicial contours) are considered. The lenses' back focal distances, for rays entering the lenses at varying finite heights, are calculated. For each lens, its spherical aberration is estimated. The effective focal length and the shape of the principal surface are also obtained. The accuracy of the results is then compared to the numerical ray-tracing using an optical design software, Zemax OpticStudio. The predicted spherical aberration for the spherical lens differs from numerical ray-tracing by less than 14 at the marginal zone, while the error for the effective focal length is less than 100.

摘要

对于给定的非均匀折射率分布,可以利用微分方程来分析渐变折射率(GRIN)介质中的光传播。在GRIN介质中进行光线追迹通常需要数值方法;然而,对于几种类型的GRIN透镜存在解析解。本文推导了傍轴和非傍轴微分方程,以计算GRIN透镜中的光线路径。结果表明,对于傍轴区域内具有二次分布的GRIN介质,傍轴方程有解析解。解析解可以通过使用勒让德多项式或通过涉及幂级数的弗罗贝尼乌斯方法获得。利用勒让德或弗罗贝尼乌斯解,可以计算沿光线路径的折射率。提出了一种新的递归关系来映射有限高度处的光轨迹。为了说明利用非傍轴微分方程的有限光线追迹方法,考虑了两个透镜(具有球形和椭圆形等折射率轮廓)。计算了光线在不同有限高度进入透镜时透镜的后焦距。对于每个透镜,估计其球差。还获得了有效焦距和主表面的形状。然后将结果的精度与使用光学设计软件Zemax OpticStudio进行的数值光线追迹进行比较。在边缘区域,球形透镜的预测球差与数值光线追迹的差异小于14,而有效焦距的误差小于100。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验