State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China.
Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
Biomater Sci. 2024 Jan 30;12(3):790-797. doi: 10.1039/d3bm01741a.
The combination of two or more drugs with different mechanisms of action is a promising strategy for circumventing multidrug resistance (MDR). However, the antitumor effect of nanosystems is usually limited due to the simultaneous release of different payloads at a single location rather than at their respective sites of action. Herein, we report a GSH and pH dual responsive nanoplatform encapsulated with doxorubicin (DOX) and resiquimod (R848) (GPNP) for combinatorial chemotherapy against cancer cells with drug resistance. GPNP possesses a core-shell structure wherein the polymer shell detaches in the acidic and sialic acid (SA)-rich environment. This leads to the release of R848 into the tumor microenvironment (TME), thereby reprogramming M2 macrophages into M1 macrophages and exposing the core CS(DOX)-PBA to kill MCF-7/ADR cells. Additionally, the nitric oxide (NO) generated by M1 macrophages can suppress the P-glycoprotein (P-gp) expression to reduce the efflux of chemotherapy drugs, thus playing a combined role in overcoming MDR. studies have demonstrated the effectiveness of GPNP in reprogramming M2 macrophages and inducing apoptosis in MCF-7/ADR cells, resulting in enhanced antitumor efficacy. This work proposed an effective combination strategy to combat chemoresistance, providing new insights into the development of innovative combinatorial therapies against MDR tumors.
两种或多种作用机制不同的药物联合使用是克服多药耐药(MDR)的一种有前途的策略。然而,由于不同的有效载荷在单一位置同时释放而不是在其各自的作用部位释放,纳米系统的抗肿瘤效果通常受到限制。在此,我们报告了一种载有阿霉素(DOX)和瑞喹莫德(R848)(GPNP)的 GSH 和 pH 双重响应纳米平台,用于针对耐药癌细胞的联合化疗。GPNP 具有核壳结构,其中聚合物壳在酸性和唾液酸(SA)丰富的环境中脱落。这导致 R848 释放到肿瘤微环境(TME)中,从而将 M2 巨噬细胞重新编程为 M1 巨噬细胞,并暴露出核心 CS(DOX)-PBA 以杀死 MCF-7/ADR 细胞。此外,M1 巨噬细胞产生的一氧化氮(NO)可以抑制 P-糖蛋白(P-gp)的表达,减少化疗药物的外排,从而在克服 MDR 方面发挥联合作用。研究表明,GPNP 可有效重编程 M2 巨噬细胞并诱导 MCF-7/ADR 细胞凋亡,从而增强抗肿瘤疗效。这项工作提出了一种有效的联合策略来对抗化疗耐药性,为开发针对 MDR 肿瘤的创新联合治疗方法提供了新的思路。