Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan.
Center for Infectious Disease Research, Fujita Health University, Toyoake, Aichi, Japan.
mBio. 2024 Feb 14;15(2):e0287423. doi: 10.1128/mbio.02874-23. Epub 2024 Jan 5.
β-Lactamases can accumulate stepwise mutations that increase their resistance profiles to the latest β-lactam agents. CMY-185 is a CMY-2-like β-lactamase and was identified in an clinical strain isolated from a patient who underwent treatment with ceftazidime-avibactam. CMY-185, possessing four amino acid substitutions of A114E, Q120K, V211S, and N346Y relative to CMY-2, confers high-level ceftazidime-avibactam resistance, and accumulation of the substitutions incrementally enhances the level of resistance to this agent. However, the functional role of each substitution and their interplay in enabling ceftazidime-avibactam resistance remains unknown. Through biochemical and structural analysis, we present the molecular basis for the enhanced ceftazidime hydrolysis and impaired avibactam inhibition conferred by CMY-185. The substituted Y346 residue is a major driver of the functional evolution as it rejects primary avibactam binding due to the steric hindrance and augments oxyimino-cephalosporin hydrolysis through a drastic structural change, rotating the side chain of Y346 and then disrupting the H-10 helix structure. The other substituted residues E114 and K120 incrementally contribute to rejection of avibactam inhibition, while S211 stimulates the turnover rate of the oxyimino-cephalosporin hydrolysis. These findings indicate that the N346Y substitution is capable of simultaneously expanding the spectrum of activity against some of the latest β-lactam agents with altered bulky side chains and rejecting the binding of β-lactamase inhibitors. However, substitution of additional residues may be required for CMY enzymes to achieve enhanced affinity or turnover rate of the β-lactam agents leading to clinically relevant levels of resistance.IMPORTANCECeftazidime-avibactam has a broad spectrum of activity against multidrug-resistant Gram-negative bacteria including carbapenem-resistant including strains with or without production of serine carbapenemases. After its launch, emergence of ceftazidime-avibactam-resistant strains that produce mutated β-lactamases capable of efficiently hydrolyzing ceftazidime or impairing avibactam inhibition are increasingly reported. Furthermore, cross-resistance towards cefiderocol, the latest cephalosporin in clinical use, has been observed in some instances. Here, we clearly demonstrate the functional role of the substituted residues in CMY-185, a four amino-acid variant of CMY-2 identified in a patient treated with ceftazidime-avibactam, for high-level resistance to this agent and low-level resistance to cefiderocol. These findings provide structural insights into how β-lactamases may incrementally alter their structures to escape multiple advanced β-lactam agents.
β-内酰胺酶可以逐步积累突变,从而提高其对最新β-内酰胺类药物的耐药谱。CMY-185 是一种 CMY-2 样β-内酰胺酶,在一名接受头孢他啶-阿维巴坦治疗的患者分离的临床菌株中被鉴定。CMY-185 相对于 CMY-2 有四个氨基酸取代,即 A114E、Q120K、V211S 和 N346Y,它赋予了高水平的头孢他啶-阿维巴坦耐药性,并且这些取代的积累逐渐增强了对该药物的耐药性。然而,每个取代的功能作用及其在赋予头孢他啶-阿维巴坦耐药性方面的相互作用仍然未知。通过生化和结构分析,我们提出了 CMY-185 增强头孢他啶水解和抑制阿维巴坦的功能作用的分子基础。取代的 Y346 残基是功能进化的主要驱动力,因为它由于空间位阻而排斥主要的阿维巴坦结合,并通过剧烈的结构变化增强肟基头孢菌素的水解,旋转 Y346 的侧链,然后破坏 H-10 螺旋结构。其他取代的残基 E114 和 K120 逐渐有助于排斥阿维巴坦的抑制,而 S211 则刺激肟基头孢菌素水解的周转率。这些发现表明,N346Y 取代能够同时扩大对一些具有改变的大侧链的最新β-内酰胺类药物的活性谱,并排斥β-内酰胺酶抑制剂的结合。然而,CMY 酶可能需要取代其他残基,以实现对β-内酰胺类药物的亲和力或周转率的提高,从而导致临床相关水平的耐药性。
重要性头孢他啶-阿维巴坦对包括产或不产丝氨酸碳青霉烯酶的碳青霉烯类耐药革兰氏阴性菌具有广泛的活性。在推出后,越来越多的报告表明,产生能够有效水解头孢他啶或抑制阿维巴坦抑制的突变β-内酰胺酶的头孢他啶-阿维巴坦耐药菌株已经出现。此外,在某些情况下,已经观察到对最新临床使用的头孢菌素类药物头孢地尔的交叉耐药性。在这里,我们清楚地证明了 CMY-185 中取代残基的功能作用,CMY-185 是在接受头孢他啶-阿维巴坦治疗的患者中分离的 CMY-2 的四个氨基酸变体,它对该药物具有高水平耐药性,对头孢地尔具有低水平耐药性。这些发现为β-内酰胺酶如何逐步改变其结构以逃避多种先进的β-内酰胺类药物提供了结构见解。