Suppr超能文献

改进高衰减多孔材料中的声波传播模型。

Improving acoustic wave propagation models in highly attenuating porous materials.

作者信息

Bouchendouka A, Fellah Z E A, Nguyen C T, Ogam E, Perrot C, Duval A, Depollier C

机构信息

Aix Marseille Univ, CNRS, Centrale Marseille, LMA UMR 7031, Marseille, France.

Univ Gustave Eiffel, Univ Paris Est Creteil, CNRS, UMR 8208, MSME, F-77454 Marne-la-Vallée, France.

出版信息

J Acoust Soc Am. 2024 Jan 1;155(1):206-217. doi: 10.1121/10.0024008.

Abstract

This article presents an improved and extended modeling approach for acoustic wave propagation in rigid porous materials, focusing on examples, such as plastic foams used for noise reduction in automotive applications. We demonstrate that the classical model (Johnson-Champoux-Allard) in the asymptotic high-frequency limit, widely employed in the literature, fails to accurately reconstruct the transmitted acoustic signal through high absorbent porous materials characterized by significant wave attenuation. The study focuses on the airborne ultrasonic frequency range (30-200 kHz). To address this limitation, we introduce new non-acoustic parameters Σ and V for viscous effects, and Σ' and V' for thermal effects, with surface and volumetric dimensions, respectively, allowing for the reconstruction of the transmitted signal and accurate modeling of the pronounced acoustic attenuation within the material. These parameters are incorporated into the expansion on skin depths of the dynamic tortuosity α(ω) and thermal tortuosity α' (ω) response functions, which describe the inertial-viscous and thermal interactions between the fluid and the solid, respectively. This novel modeling approach enables a more comprehensive study of high attenuating porous media, which are crucial for effective noise reduction. Additionally, it opens up new possibilities for characterization beyond the capabilities of current models.

摘要

本文提出了一种用于刚性多孔材料中声波传播的改进和扩展建模方法,重点关注汽车应用中用于降噪的泡沫塑料等示例。我们证明,文献中广泛使用的经典模型(Johnson-Champoux-Allard)在渐近高频极限下,无法准确重构通过具有显著波衰减特性的高吸收性多孔材料的透射声信号。该研究聚焦于空气传播超声频率范围(30 - 200 kHz)。为解决这一局限性,我们引入了新的非声学参数Σ和V用于粘性效应,以及Σ'和V'用于热效应,它们分别具有表面和体积维度,从而能够重构透射信号并对材料内明显的声衰减进行精确建模。这些参数被纳入动态曲折度α(ω)和热曲折度α'(ω)响应函数的趋肤深度展开式中,这两个响应函数分别描述了流体与固体之间的惯性 - 粘性和热相互作用。这种新颖的建模方法能够对高衰减多孔介质进行更全面的研究,这对于有效降噪至关重要。此外,它为超越当前模型能力的表征开辟了新的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验