College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou, 450001, China.
College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou, 450001, China.
Anal Chim Acta. 2024 Jan 25;1287:342085. doi: 10.1016/j.aca.2023.342085. Epub 2023 Nov 29.
Human telomerase is a ribonucleoprotein complex that includes proteins and human telomerase RNA (hTR). Emerging evidence suggested that the expression level of hTR was high related with the development of tumor, so it is important to accurately detect the content of hTR. Optical control of DNAzyme activity shows a promising strategy for precise biosensing, biomedical imaging and modulation of biological processes. Although DNAzyme-based sensors can be controlled spatiotemporally by light, its application in the detection of hTR in living cells is still rare. Therefore, designing DNAzyme activity spatiotemporal controllable sensors for hTR detection is highly needed.
We developed a UV light-activated DNAzyme-based nanoprobe for spatially accurate imaging of intracellular hTR. The proposed nanoprobe was named MDPH, which composed of an 8-17 DNAzyme (D) inactivated by a protector strand (P), a substrate strand (H), and MnO nanosheets. The MnO nanosheets can enhance the cellular uptake of DNA strands, so that MDPH probe can enter cells autonomously through endocytosis. Under the high concentration of GSH in cancer cells, MnO nanosheets can self-generate cofactors to maintain the catalytic activity of DNAzyme. When exposing UV light and in presence of target hTR, DNAzyme could cleave substrate H, resulting in the recovery of fluorescence of the system. The cells imaging results show that MDPH probe could be spatiotemporally controlled to image endogenous hTR in cancer cells.
With this design, telomerase RNA-specific fluorescent imaging was achieved by MDPH probe in both cancer and normal cells. Our probe made a promising new platform for spatiotemporal controllable intracellular hTR monitoring. This current method can be applied to monitor a variety of other biomarkers in living cells and perform medical diagnosis, so it may has broad applications in the field of medicine.
人类端粒酶是一种核糖核蛋白复合物,包括蛋白质和人类端粒酶 RNA(hTR)。新出现的证据表明,hTR 的表达水平与肿瘤的发展高度相关,因此准确检测 hTR 的含量非常重要。DNA 酶活性的光学控制为精确的生物传感、生物医学成像和生物过程的调节展示了一种有前途的策略。尽管基于 DNA 酶的传感器可以通过光进行时空控制,但它在活细胞中 hTR 的检测中的应用仍然很少。因此,设计用于 hTR 检测的 DNA 酶活性时空可控传感器是非常需要的。
我们开发了一种基于紫外线激活的 DNA 酶的纳米探针,用于对细胞内 hTR 进行空间精确成像。所提出的纳米探针被命名为 MDPH,它由一个 8-17 DNA 酶(D)被保护链(P)失活,底物链(H)和 MnO 纳米片组成。MnO 纳米片可以增强 DNA 链的细胞摄取,使 MDPH 探针可以通过内吞作用自主进入细胞。在癌细胞中高浓度 GSH 的情况下,MnO 纳米片可以自我生成辅因子来维持 DNA 酶的催化活性。当暴露在紫外光下并存在靶标 hTR 时,DNA 酶可以切割底物 H,从而恢复系统的荧光。细胞成像结果表明,MDPH 探针可以时空控制来对癌细胞中的内源性 hTR 进行成像。
通过 MDPH 探针,在癌症和正常细胞中都实现了端粒酶 RNA 特异性荧光成像。我们的探针为时空可控的细胞内 hTR 监测提供了一个有前途的新平台。这种当前的方法可应用于监测活细胞中的多种其他生物标志物并进行医学诊断,因此它可能在医学领域有广泛的应用。