College of Information Engineering, Yangzhou University, Yangzhou, 225127, China.
College of Information Engineering, Yangzhou University, Yangzhou, 225127, China.
Neural Netw. 2024 Apr;172:106083. doi: 10.1016/j.neunet.2023.12.037. Epub 2023 Dec 27.
Traditional Graph Neural Network (GNN), as a graph representation learning method, is constrained by label information. However, Graph Contrastive Learning (GCL) methods, which tackles the label problem effectively, mainly focus on the feature information of the global graph or small subgraph structure (e.g., the first-order neighborhood). In this paper, we propose a Local Structure-aware Graph Contrastive representation Learning method (LS-GCL) to model the structural information of nodes from multiple views. Specifically, we construct the semantic subgraphs that are not limited to the first-order neighbors. For the local view, the semantic subgraph of each target node is input into a shared GNN encoder to obtain the target node embeddings at the subgraph-level. Then, we use a pooling function to generate the subgraph-level graph embeddings. For the global view, considering the original graph preserves indispensable semantic information of nodes, we leverage the shared GNN encoder to learn the target node embeddings at the global graph-level. The proposed LS-GCL model is optimized to maximize the common information among similar instances at three various perspectives through a multi-level contrastive loss function. Experimental results on six datasets illustrate that our method outperforms state-of-the-art graph representation learning approaches for both node classification and link prediction tasks.
传统的图神经网络 (GNN) 作为一种图表示学习方法,受到标签信息的限制。然而,有效地解决标签问题的图对比学习 (GCL) 方法主要关注全局图或小子图结构(例如,一阶邻域)的特征信息。在本文中,我们提出了一种局部结构感知图对比表示学习方法 (LS-GCL),以从多个视角对节点的结构信息进行建模。具体来说,我们构建不限于一阶邻居的语义子图。对于局部视图,将每个目标节点的语义子图输入到共享的 GNN 编码器中,以获得子图级别的目标节点嵌入。然后,我们使用池化函数生成子图级别的图嵌入。对于全局视图,考虑到原始图保留了节点不可或缺的语义信息,我们利用共享的 GNN 编码器学习全局图级别的目标节点嵌入。通过多层次对比损失函数,所提出的 LS-GCL 模型被优化为最大化三个不同视角下相似实例之间的公共信息。在六个数据集上的实验结果表明,我们的方法在节点分类和链接预测任务上优于最先进的图表示学习方法。