Suppr超能文献

机器学习在生物炭研究中的应用:一个迷你综述。

Machine learning applications for biochar studies: A mini-review.

机构信息

Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan.

Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan.

出版信息

Bioresour Technol. 2024 Feb;394:130291. doi: 10.1016/j.biortech.2023.130291. Epub 2024 Jan 4.

Abstract

Biochar is a promising carbon sink whose application can assist in reducing carbon emissions. Development of this technology currently relies on experimental trials, which are time-consuming and labor-intensive. Machine learning (ML) technology presents a potential solution for streamlining this process. This review summarizes the current research on ML's applications in biochar production, characterization, and applications. It briefly explains commonly used machine learning algorithms and discusses prospects and challenges. A hybrid model that combines ML with mechanism-based analysis could be a future trend, addressing the ML's black-box nature. While biochar studies have adopted ML technology, current works mostly use lab-scale data for model training. Further work is needed to develop ML models based on pilot or industrial-scale data to realize the use of ML techniques for the field application of biochar.

摘要

生物炭是一种很有前途的碳汇,其应用可以帮助减少碳排放。这项技术的发展目前依赖于耗时耗力的实验性试验。机器学习(ML)技术为简化这一过程提供了潜在的解决方案。本综述总结了目前关于 ML 在生物炭生产、特性和应用方面的研究。简要介绍了常用的机器学习算法,并讨论了前景和挑战。将 ML 与基于机制的分析相结合的混合模型可能是未来的趋势,可以解决 ML 的黑箱性质。虽然生物炭研究已经采用了 ML 技术,但目前的工作大多使用实验室规模的数据进行模型训练。需要进一步开展基于中试或工业规模数据的 ML 模型开发工作,以实现 ML 技术在生物炭田间应用中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验