State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section, South Renmin Road, Chengdu, Sichuan, 610041, China.
Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, No.639, Zhizaoju Road, Huangpu District, Shanghai, 200011, China.
BMC Oral Health. 2024 Jan 6;24(1):30. doi: 10.1186/s12903-023-03817-y.
BACKGROUND: Adequate occlusal plane (OP) rotation through orthodontic therapy enables satisfying profile improvements for patients who are disturbed by their maxillomandibular imbalance but reluctant to surgery. The study aims to quantify profile improvements that OP rotation could produce in orthodontic treatment and whether the efficacy differs among skeletal types via machine learning. MATERIALS AND METHODS: Cephalometric radiographs of 903 patients were marked and analyzed by trained orthodontists with assistance of Uceph, a commercial software which use artificial intelligence to perform the cephalometrics analysis. Back-propagation artificial neural network (BP-ANN) models were then trained based on collected samples to fit the relationship among maxillomandibular structural indicators, SN-OP and P-A Face Height ratio (FHR), Facial Angle (FA). After corroborating the precision and reliability of the models by T-test and Bland-Altman analysis, simulation strategy and matrix computation were combined to predict the consequent changes of FHR, FA to OP rotation. Linear regression and statistical approaches were then applied for coefficient calculation and differences comparison. RESULTS: The regression scores calculating the similarity between predicted and true values reached 0.916 and 0.908 in FHR, FA models respectively, and almost all pairs were in 95% CI of Bland-Altman analysis, confirming the effectiveness of our models. Matrix simulation was used to ascertain the efficacy of OP control in aesthetic improvements. Intriguingly, though FHR change rate appeared to be constant across groups, in FA models, hypodivergent group displayed more sensitive changes to SN-OP than normodivergent, hypodivergent group, and Class III group significantly showed larger changes than Class I and II. CONCLUSIONS: Rotation of OP could yield differently to facial aesthetic improvements as more efficient in hypodivergent groups vertically and Class III groups sagittally.
背景:通过正畸治疗使咬合平面(OP)充分旋转,可以为那些因上下颌骨不平衡而感到困扰但又不愿意接受手术的患者带来令人满意的侧貌改善。本研究旨在通过机器学习量化 OP 旋转在正畸治疗中产生的侧貌改善效果,以及在不同骨骼类型中其疗效是否存在差异。
材料与方法:903 名患者的头颅侧位片由经过培训的正畸医生使用人工智能商业软件 Uceph 进行标记和分析。然后,根据收集到的样本,使用反向传播人工神经网络(BP-ANN)模型来训练这些数据,以拟合上下颌骨结构指标、SN-OP 和 P-A 面高比(FHR)、面角(FA)之间的关系。通过 T 检验和 Bland-Altman 分析验证模型的精度和可靠性后,采用模拟策略和矩阵计算来预测 FHR、FA 随 OP 旋转的变化。然后应用线性回归和统计方法计算系数并进行差异比较。
结果:FHR 和 FA 模型中,计算预测值与真实值之间相似性的回归分数分别达到 0.916 和 0.908,几乎所有的配对都在 Bland-Altman 分析的 95%置信区间内,这证实了我们模型的有效性。矩阵模拟用于确定 OP 控制在美学改善中的效果。有趣的是,尽管 FHR 变化率在各组之间似乎是恒定的,但在 FA 模型中,低角组相对于均角组和高角组,SN-OP 的变化更为敏感,而 Class III 组相对于 Class I 和 II 组,FA 的变化更为显著。
结论:OP 的旋转在垂直方向上对低角组和 Class III 组的面型美学改善效果更为显著,而在矢状方向上对高角组的效果更为显著。
Zhejiang Da Xue Xue Bao Yi Xue Ban. 2023-4-25
Clin Cosmet Investig Dent. 2020-4-24
Int J Oral Sci. 2025-2-1
Opt Express. 2022-3-14
Anat Rec (Hoboken). 2022-9
Orthod Craniofac Res. 2021-12
Dental Press J Orthod. 2021
Am J Orthod Dentofacial Orthop. 2021-9
J Dent Res. 2021-3
Clin Cosmet Investig Dent. 2020-4-24