Centre for DNA Fingerprinting and Diagnostics, Hyderabad,
J Genet. 2024;103.
In the fruit fly , circadian rhythm was disrupted when the inner nuclear membrane protein lamin B receptor (LBR) was depleted from its clock neurons ( 118, e2019756118. 2021; https://doi.org/10. 1073/pnas.2019756118 and 6, 0139, 2023; https://doi.org/10.34133/research.0139). Ordinarily, the clock proteinPERIOD (PER) forms foci close to the inner nuclear membrane in the circadian clock's repression phase. The size, number, and location of foci near the nuclear membrane oscillate with a 24-h rhythm. When LBR was absent the foci did not form. The PER foci bring and other clock genes close to the nuclear envelope, where their transcription is silenced. Then, in the circadian clock's activation phase, the PER protein gradually gets degraded and the foci disappear. The clock genes, including , relocate to the nucleus interior where they resume transcription. Rhythmic re-positioning of clock genes between nucleus periphery and interior, correlates with their repression and activation in the circadian cycle. Absence of LBR disrupted this rhythm. Phosphorylation of PER promoted the formation of foci whereas dephosphorylation by protein phosphatase 2A causedthem to disappear. LBR promoted focus formation by destabilizing the catalytic subunit of protein phosphatase 2A. The gene is no stranger to this journal. The first hint that vertebrate LBR is also a sterol biosynthesis enzyme, specifically, a sterol C14 reductase, was reported here (. 73, 33-41, 1994; https://www.ias.ac.in/article/fulltext/jgen/073/01/0033-0041). Mutations in the human gene cause a range of phenotypes--from the relatively benign Pelger-Huet anomaly to the perinatally lethal Greenberg skeletal dysplasia.Drosophila, like all insects, is a sterol auxotroph. The fly orthologue of vertebrate genes encodes a protein (dLBR) that shares several properties with vertebrate LBR proteins, with one notable exception. While human LBR complemented theyeast Saccharomyces cerevisiae erg24 mutant which lacks sterol C14 reductase activity, dLBR did not (, 2015-28, 2004; https://doi.org/10.1242/jcs.01052). Despite not possessing sterol reductase activity, dLBR retains significant sequence homology with vertebrate LBRs which have this activity. An undergraduate summer trainee in my laboratory obtained early (unpublished) evidence that dLBR lost sterol reductase activity during evolution. She transferred adult drosophila flies to vials containing a medium made of agar, dextrose, and dried and powdered mycelium of the filamentous fungus . On medium made with wild-type mycelium, theflies mated, laid eggs, hatched larvae, and developed pupae which eclosed progeny adult flies. The life cycle was no different than on 'regular' fly food composed of agar, dextrose and yeast extract. However, on a medium made with mycelium from a sterol C14 reductase null mutant, the flies laid eggs which hatched and released larvae, but the larvae failed to pupate, and no adult progeny flies emerged. This was because the fly lacks a sterol C14 reductase. The wild-type sterol, ergosterol, is a precursor of the steroid hormone ecdysone needed for molting and metamorphosis. Can expression of vertebrate LBR in dLBR-depleted fly clock neurons restore circadian rhythm? Can expression of vertebrate LBR enable flies to complete their life cycle on mutant medium? Does LBR regulate the vertebrate clock in a like manner? If yes, then is the sterol reductase activity dispensable in this role? These are some questions that came to my mind on a recent morning walk. The walk itself was a much-cherished outcome of my circadian clock.
在果蝇中,当核膜蛋白 lamin B 受体(LBR)从其生物钟神经元中耗尽时,生物钟节律被打乱(118,e2019756118;https://doi.org/10.1073/pnas.2019756118 和 6,0139,2023;https://doi.org/10.34133/research.0139)。通常情况下,生物钟蛋白 PERIOD(PER)在生物钟的抑制阶段在核膜附近形成焦点。核膜附近焦点的大小、数量和位置随 24 小时节律而波动。当 LBR 不存在时,焦点不会形成。PER 焦点使 和其他生物钟基因靠近核膜,在那里它们的转录被沉默。然后,在生物钟的激活阶段,PER 蛋白逐渐降解,焦点消失。时钟基因,包括 ,重新定位到细胞核内部,在那里它们恢复转录。时钟基因在核内外的周期性重新定位与它们在生物钟周期中的抑制和激活相关。LBR 的缺失扰乱了这种节律。PER 的磷酸化促进了焦点的形成,而蛋白磷酸酶 2A 的去磷酸化导致它们消失。LBR 通过使蛋白磷酸酶 2A 的催化亚基不稳定来促进焦点的形成。该基因对本杂志来说并不陌生。第一个暗示脊椎动物 LBR 也是一种胆固醇生物合成酶,特别是一种胆固醇 C14 还原酶的线索是在这里报告的(73,33-41,1994;https://www.ias.ac.in/article/fulltext/jgen/073/01/0033-0041)。人类 基因的突变会导致一系列表型——从相对良性的 Pelger-Huet 异常到围产期致死的 Greenberg 骨骼发育不良。果蝇与所有昆虫一样,是一种胆固醇营养缺陷型生物。脊椎动物 基因的果蝇同源物编码一种蛋白质(dLBR),它与脊椎动物 LBR 蛋白具有几个共同的特性,只有一个显著的例外。虽然人类 LBR 可以补充酵母酿酒酵母 erg24 突变体的功能,该突变体缺乏胆固醇 C14 还原酶活性,但 dLBR 不能(2015-28,2004;https://doi.org/10.1242/jcs.01052)。尽管不具有胆固醇还原酶活性,但 dLBR 仍然保留了与具有这种活性的脊椎动物 LBR 显著的序列同源性。我实验室的一名本科暑期实习生获得了早期(未发表)的证据,表明 dLBR 在进化过程中失去了胆固醇还原酶活性。她将成年果蝇转移到含有琼脂、葡萄糖和丝状真菌 的干燥和粉碎菌丝体的小瓶中。在用野生型菌丝体制成的培养基上,果蝇交配、产卵、孵化幼虫并发育成蛹,然后发育出成年果蝇。生命周期与由琼脂、葡萄糖和酵母提取物组成的“常规”果蝇食物没有什么不同。然而,在用胆固醇 C14 还原酶缺失突变体的菌丝体制成的培养基上,果蝇产卵,卵孵化并释放幼虫,但幼虫未能化蛹,也没有成年后代果蝇出现。这是因为果蝇缺乏胆固醇 C14 还原酶。野生型固醇,麦角固醇,是蜕皮激素的前体,蜕皮激素是蜕皮和变态所必需的。表达在 dLBR 耗尽的果蝇生物钟神经元中的脊椎动物 LBR 能否恢复生物钟节律?表达脊椎动物 LBR 能否使果蝇在突变体 培养基上完成其生命周期?LBR 是否以类似的方式调节脊椎动物的生物钟?如果是这样,那么固醇还原酶活性在这个角色中是否可有可无?这些是我最近晨跑时想到的一些问题。晨跑本身就是我生物钟的一个非常宝贵的结果。