Harmer Zachary P, Thompson Jaron C, Cole David L, Zavala Victor M, McClean Megan N
bioRxiv. 2023 Dec 20:2023.12.19.572411. doi: 10.1101/2023.12.19.572411.
The ability to control cellular processes using optogenetics is inducer-limited, with most optogenetic systems responding to blue light. To address this limitation we leverage an integrated framework combining Lustro, a powerful high-throughput optogenetics platform, and machine learning tools to enable multiplexed control over blue light-sensitive optogenetic systems. Specifically, we identify light induction conditions for sequential activation as well as preferential activation and switching between pairs of light-sensitive spit transcription factors in the budding yeast, . We use the high-throughput data generated from Lustro to build a Bayesian optimization framework that incorporates data-driven learning, uncertainty quantification, and experimental design to enable the prediction of system behavior and the identification of optimal conditions for multiplexed control. This work lays the foundation for designing more advanced synthetic biological circuits incorporating optogenetics, where multiple circuit components can be controlled using designer light induction programs, with broad implications for biotechnology and bioengineering.
利用光遗传学控制细胞过程的能力受到诱导剂的限制,大多数光遗传学系统对蓝光有反应。为了解决这一限制,我们利用了一个集成框架,该框架结合了强大的高通量光遗传学平台Lustro和机器学习工具,以实现对蓝光敏感光遗传学系统的多重控制。具体而言,我们确定了用于顺序激活以及在芽殖酵母中的一对光敏感分裂转录因子之间进行优先激活和切换的光诱导条件。我们使用从Lustro生成的高通量数据构建了一个贝叶斯优化框架,该框架纳入了数据驱动学习、不确定性量化和实验设计,以实现系统行为的预测和多重控制最佳条件的识别。这项工作为设计包含光遗传学的更先进合成生物电路奠定了基础,在这种电路中,可以使用定制的光诱导程序控制多个电路组件,对生物技术和生物工程具有广泛的意义。