Suppr超能文献

FeO的正交磁结构:表象分析与密度泛函理论计算

Orthogonal magnetic structures of FeO: representation analysis and DFT calculations.

作者信息

Zhandun Vyacheslav S, Kazak Natalia V, Kupenko Ilya, Vasiukov Denis M, Li Xiang, Blackburn Elizabeth, Ovchinnikov Sergei G

机构信息

Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia.

Institut für Mineralogie, University of Münster, Corrensstr. 24, 48149 Münster, Germany.

出版信息

Dalton Trans. 2024 Jan 30;53(5):2242-2251. doi: 10.1039/d3dt03437b.

Abstract

The magnetic and electronic structures of FeO have been investigated at ambient and high pressures a combination of representation analysis, density functional theory (DFT+) calculations, and Mössbauer spectroscopy. A few spin configurations corresponding to the different irreducible representations have been considered. The total-energy calculations reveal that the magnetic ground state of FeO corresponds to an orthogonal spin order. Depending on the magnetic propagation vector , two spin-ordered phases with minimal energy differences are realized. The lowest energy magnetic phase is related to = (0, 0, 0) and is characterized by ferromagnetic ordering of iron magnetic moments at prismatic sites along the -axis and antiferromagnetic ordering of iron moments at octahedral sites along the -axis. For the = (1/2, 0, 0) phase, the moments in the prisms are antiferromagnetically ordered along the -axis and the moments in the octahedra are still antiferromagnetically ordered along the -axis. Under high pressure, FeO exhibits magnetic transitions with the corresponding electronic transitions of the metal-insulator type. At a critical pressure ∼ 60 GPa, the Fe ions at the octahedral sites undergo a high-spin to low-spin state crossover with a decrease in the unit-cell volume of ∼4%, while the Fe ions at the prismatic sites remain in the high-spin state up to 130 GPa. This site-dependent magnetic collapse is experimentally observed in the transformation of Mössbauer spectra measured at room temperature and high pressures.

摘要

通过群表示分析、密度泛函理论(DFT +)计算和穆斯堡尔光谱相结合的方法,研究了FeO在常压和高压下的磁性和电子结构。考虑了对应于不同不可约表示的几种自旋构型。总能计算表明,FeO的磁性基态对应于正交自旋序。根据磁传播矢量,实现了两个能量差最小的自旋有序相。能量最低的磁相与 = (0, 0, 0) 相关,其特征是沿z轴棱柱位点处铁磁矩的铁磁有序排列以及沿z轴八面体位点处铁磁矩的反铁磁有序排列。对于 = (1/2, 0, 0) 相,棱柱中的磁矩沿z轴反铁磁有序排列,八面体中的磁矩仍沿z轴反铁磁有序排列。在高压下,FeO表现出磁性转变以及相应的金属 - 绝缘体类型的电子转变。在临界压力 ∼ 60 GPa时,八面体位点处的Fe离子经历高自旋到低自旋态的转变,晶胞体积减小约4%,而棱柱位点处的Fe离子在高达130 GPa时仍保持高自旋态。在室温及高压下测量的穆斯堡尔光谱的转变中,通过实验观察到了这种位点依赖性的磁坍缩。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验