Tkachenko Oleg, Nikolaichuk Alina, Fihurka Nataliia, Backhaus Andreas, Zimmerman Julie B, Strømme Maria, Budnyak Tetyana M
Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, The Ångström Laboratory, Uppsala University, Lägerhyddsvägen 1, Uppsala 751 03, Sweden.
Center for Green Chemistry and Green Engineering, School of the Environment, Yale University, 195 Prospect Street, New Haven, Connecticut 06511, United States.
ACS Appl Mater Interfaces. 2024 Jan 24;16(3):3427-3441. doi: 10.1021/acsami.3c15659. Epub 2024 Jan 9.
The study presents a streamlined one-step process for producing highly porous, metal-free, N-doped activated carbon (N-AC) for CO capture and herbicide removal from simulated industrially polluted and real environmental systems. N-AC was prepared from kraft lignin─a carbon-rich and abundant byproduct of the pulp industry, using nitric acid as the activator and urea as the N-dopant. The reported carbonization process under a nitrogen atmosphere renders a product with a high yield of 30% even at high temperatures up to 800 °C. N-AC exhibited a substantial high N content (4-5%), the presence of aliphatic and phenolic OH groups, and a notable absence of carboxylic groups, as confirmed by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and Boehm's titration. Porosity analysis indicated that micropores constituted the majority of the pore structure, with 86% of pores having diameters less than 0.6 nm. According to BET adsorption analysis, the developed porous structure of N-AC boasted a substantial specific surface area of 1000 m g. N-AC proved to be a promising adsorbent for air and water purification. Specifically, N-AC exhibited a strong affinity for CO, with an adsorption capacity of 1.4 mmol g at 0.15 bar and 20 °C, and it demonstrated the highest selectivity over N from the simulated flue gas system (27.3 mmol g for 15:85 v/v CO/N at 20 °C) among all previously reported nitrogen-doped AC materials from kraft lignin. Moreover, N-AC displayed excellent reusability and efficient CO release, maintaining an adsorption capacity of 3.1 mmol g (at 1 bar and 25 °C) over 10 consecutive adsorption-desorption cycles, confirming N-AC as a useful material for CO storage and utilization. The unique cationic nature of N-AC enhanced the adsorption of herbicides in neutral and weakly basic environments, which is relevant for real waters. It exhibited an impressive adsorption capacity for the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) at 96 ± 6 mg g under pH 6 and 25 °C according to the Langmuir-Freundlich model. Notably, N-AC preserves its high adsorption capacity toward 2,4-D from simulated groundwater and runoff from tomato greenhouse, while performance in real samples from Fyris river in Uppsala, Sweden, causes a decrease of only 4-5%. Owing to the one-step process, high yield, annual abundance of kraft lignin, and use of environmentally friendly activating agents, N-AC has substantial potential for large-scale industrial applications.
该研究提出了一种简化的一步法工艺,用于制备高度多孔、无金属的氮掺杂活性炭(N-AC),用于从模拟工业污染和实际环境系统中捕获CO和去除除草剂。N-AC由硫酸盐木质素(纸浆工业中富含碳且丰富的副产品)制备而成,使用硝酸作为活化剂,尿素作为氮掺杂剂。据报道,在氮气气氛下的碳化过程即使在高达800℃的高温下也能使产物具有30%的高产率。傅里叶变换红外光谱、X射线光电子能谱和 Boehm 滴定法证实,N-AC具有相当高的氮含量(4-5%),存在脂肪族和酚羟基,且明显不存在羧基。孔隙率分析表明,微孔构成了孔隙结构的大部分,86%的孔隙直径小于0.6nm。根据BET吸附分析,N-AC发达的多孔结构具有1000 m²/g的高比表面积。N-AC被证明是一种用于空气和水净化的有前景的吸附剂。具体而言,N-AC对CO表现出强烈的亲和力,在0.15 bar和20℃下的吸附容量为1.4 mmol/g,并且在所有先前报道的由硫酸盐木质素制备的氮掺杂活性炭材料中,它在20℃下对模拟烟道气系统中的N表现出最高的选择性(对于15:85 v/v CO/N为27.3 mmol/g)。此外,N-AC表现出优异的可重复使用性和高效的CO释放,在连续10次吸附-解吸循环中保持3.1 mmol/g的吸附容量(在1 bar和25℃下),证实N-AC是一种用于CO储存和利用的有用材料。N-AC独特的阳离子性质增强了在中性和弱碱性环境中对除草剂的吸附,这与实际水体相关。根据Langmuir-Freundlich模型,在pH 6和25℃下,它对除草剂2,4-二氯苯氧乙酸(2,4-D)的吸附容量令人印象深刻,为96±6 mg/g。值得注意的是,N-AC对来自模拟地下水和番茄温室径流中的2,4-D保持其高吸附容量,而在瑞典乌普萨拉菲里斯河的实际样品中的性能仅下降4-5%。由于一步法工艺、高产率、硫酸盐木质素的年产量丰富以及使用环境友好的活化剂,N-AC具有大规模工业应用的巨大潜力。