Shen Qian, Chen Yihan
School of Automation, Nanjing University of Science and Technology, Nanjing, Jiangsu 210049, China.
College of Automation & College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China.
ISA Trans. 2024 Mar;146:297-307. doi: 10.1016/j.isatra.2023.12.027. Epub 2024 Jan 2.
This paper is devoted to the stability analysis of a class of discrete-time switched systems under newly designed switching regularities. The utilized switching is extended from the primitive mode-dependent persistent dwell-time switching. By integrating the existing admissible edge-dependent average dwell-time switching into the mode-dependent persistent dwell-time regime, a novel admissible edge-dependent average persistent dwell-time strategy involving the notion of admissible transition edges is proposed. The integrated admissible edge-dependent average dwell-time switching has been confirmed to be superior to mode-dependent average dwell-time switching. This superiority makes the proposed switching more general than the relaxed mode-dependent persistent dwell-time switching in the literature. Even if the embedded admissible edge-dependent average dwell-time restrictions degrade to admissible edge-dependent dwell-time ones under special parameter settings, the resulting admissible edge-dependent persistent dwell-time switching retains the advantage of admissible transition edges to generalize the original mode-dependent persistent dwell-time switching. Meanwhile, to remove the switching information reliance in the existing multiple convex Lyapunov functions, an improved multiple convex Lyapunov function method is devised. The designed Lyapunov function can be used to implement broader feasible ranges and tighter lower bounds of admissible edge-dependent average persistent dwell-time (or admissible edge-dependent persistent dwell-time). Finally, the validity and efficiency of the presented approaches are illustrated by a three-phase inverter and a numerical example.
本文致力于研究一类在新设计切换规则下的离散时间切换系统的稳定性分析。所采用的切换是从原始的依赖模式的持续驻留时间切换扩展而来的。通过将现有的依赖边的平均驻留时间切换整合到依赖模式的持续驻留时间机制中,提出了一种涉及可允许转换边概念的新型依赖边的平均持续驻留时间策略。已证实整合后的依赖边的平均驻留时间切换优于依赖模式的平均驻留时间切换。这种优越性使得所提出的切换比文献中宽松的依赖模式的持续驻留时间切换更具通用性。即使在特殊参数设置下,嵌入的依赖边的平均驻留时间限制退化为依赖边的驻留时间限制,所得的依赖边的持续驻留时间切换仍保留了可允许转换边的优势,从而推广了原始的依赖模式的持续驻留时间切换。同时,为消除现有多个凸Lyapunov函数中对切换信息的依赖,设计了一种改进的多个凸Lyapunov函数方法。所设计的Lyapunov函数可用于实现依赖边的平均持续驻留时间(或依赖边的持续驻留时间)更宽的可行范围和更紧的下界。最后,通过一个三相逆变器和一个数值例子说明了所提出方法的有效性和效率。