Kalra Andrew, Bachina Preetham, Shou Benjamin L, Hwang Jaeho, Barshay Meylakh, Kulkarni Shreyas, Sears Isaac, Eickhoff Carsten, Bermudez Christian A, Brodie Daniel, Ventetuolo Corey E, Whitman Glenn J R, Abbasi Adeel, Cho Sung-Min
Johns Hopkins University School of Medicine.
Warren Alpert Medical School of Brown University.
Res Sq. 2023 Dec 22:rs.3.rs-3779429. doi: 10.21203/rs.3.rs-3779429/v1.
Venovenous extracorporeal membrane oxygenation (VV-ECMO) is associated with acute brain injury (ABI), including central nervous system (CNS) ischemia (defined as ischemic stroke or hypoxic-ischemic brain injury) and intracranial hemorrhage (ICH). There is limited data on prediction models for ABI and neurological outcomes in VV-ECMO.
Can machine learning (ML) accurately predict ABI and identify modifiable factors of ABI in VV-ECMO?
We analyzed adult (≥18 years) VV-ECMO patients in the Extracorporeal Life Support Organization Registry (2009-2021) from 676 centers. ABI was defined as CNS ischemia, ICH, brain death, and seizures. Overall, 65 total variables were extracted including clinical characteristics and pre-ECMO and on-ECMO variables. Random Forest, CatBoost, LightGBM, and XGBoost ML algorithms (10-fold leave-one-out cross-validation) were used to predict ABI. Feature Importance Scores were used to pinpoint variables most important for predicting ABI.
Of 37,473 VV-ECMO patients (median age=48.1 years, 63% male), 2,644 (7.1%) experienced ABI: 610 (2%) and 1,591 (4%) experienced CNS ischemia and ICH, respectively. The median ECMO duration was 10 days (interquartile range=5-20 days). The area under the receiver-operating characteristics curves to predict ABI, CNS ischemia, and ICH were 0.67, 0.63, and 0.70, respectively. The accuracy, positive predictive, and negative predictive values for ABI were 79%, 15%, and 95%, respectively. ML identified pre-ECMO cardiac arrest as the most important risk factor for ABI while ECMO duration and bridge to transplantation as an indication for ECMO were associated with lower risk of ABI.
This is the first study to use machine learning to predict ABI in a large cohort of VV-ECMO patients. Performance was sub-optimal due to the low reported prevalence of ABI with lack of standardization of neuromonitoring/imaging protocols and data granularity in the ELSO Registry. Standardized neurological monitoring and imaging protocols may improve machine learning performance to predict ABI.
静脉-静脉体外膜肺氧合(VV-ECMO)与急性脑损伤(ABI)相关,包括中枢神经系统(CNS)缺血(定义为缺血性卒中或缺氧缺血性脑损伤)和颅内出血(ICH)。关于VV-ECMO中ABI预测模型和神经学预后的数据有限。
机器学习(ML)能否准确预测VV-ECMO中的ABI并识别ABI的可改变因素?
我们分析了体外生命支持组织登记处(2009 - 2021年)来自676个中心的成年(≥18岁)VV-ECMO患者。ABI定义为CNS缺血、ICH、脑死亡和癫痫发作。总体而言,提取了65个变量,包括临床特征以及ECMO前和ECMO期间的变量。使用随机森林、CatBoost、LightGBM和XGBoost机器学习算法(10折留一法交叉验证)来预测ABI。特征重要性得分用于确定对预测ABI最重要的变量。
在37473例VV-ECMO患者(中位年龄 = 48.1岁,63%为男性)中,2644例(7.1%)发生了ABI:分别有610例(2%)和1591例(4%)发生了CNS缺血和ICH。ECMO的中位持续时间为10天(四分位间距 = 5 - 20天)。预测ABI、CNS缺血和ICH的受试者工作特征曲线下面积分别为0.67、0.63和0.70。ABI的准确性、阳性预测值和阴性预测值分别为79%、15%和95%。机器学习确定ECMO前心脏骤停是ABI最重要的危险因素,而ECMO持续时间和作为ECMO指征的桥接至移植与较低的ABI风险相关。
这是第一项使用机器学习在大量VV-ECMO患者队列中预测ABI的研究。由于ELSO登记处报告的ABI患病率较低,且神经监测/成像方案和数据粒度缺乏标准化导致性能未达最优。标准化的神经监测和成像方案可能会提高机器学习预测ABI的性能。