Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, CNRS, 06108, Nice, France.
Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, 91190, Saint-Aubin, France.
Sci Rep. 2024 Jan 10;14(1):1021. doi: 10.1038/s41598-023-49293-w.
Legacy radioactive waste can be defined as the radioactive waste produced during the infancy of the civil nuclear industry's development in the mid-20th Century, a time when, unfortunately, waste storage and treatment were not well planned. The marine environment is one of the environmental compartments worth studying in this regard because of legacy waste in specific locations of the seabed. Comprising nearly 70% of the earth's service, the oceans are the largest and indeed the final destination for contaminated fresh waters. For this reason, long-term studies of the accumulation biochemical mechanisms of metallic radionuclides in the marine ecosystem are required. In this context the brown algal compartment may be ecologically relevant because of forming large and dense algal beds in coastal areas and potential important biomass for contamination. This report presents the first step in the investigation of uranium (U, an element used in the nuclear cycle) bioaccumulation in the brown alga Ascophyllum nodosum using a multi-scale spectroscopic and imaging approach. Contamination of A. nodosum specimens in closed aquaria at 13 °C was performed with a defined quantity of U(VI) (10 M). The living algal uptake was quantified by ICP-MS and a localization study in the various algal compartments was carried out by combining electronic microscopy imaging (SEM), X-ray Absorption spectroscopy (XAS) and micro X-ray Florescence (μ-XRF). Data indicate that the brown alga is able to concentrate U(VI) by an active bioaccumulation mechanism, reaching an equilibrium state after 200 h of daily contamination. A comparison between living organisms and dry biomass confirms a stress-response process in the former, with an average bioaccumulation factor (BAF) of 10 ± 2 for living specimens (90% lower compared to dry biomass, 142 ± 5). Also, these results open new perspectives for a potential use of A. nodosum dry biomass as uranium biosorbent. The different partial BAFs (bioaccumulation factors) range from 3 (for thallus) to 49 (for receptacles) leading to a compartmentalization of uranium within the seaweed. This reveals a higher accumulation capacity in the receptacles, the algal reproductive parts. SEM images highlight the different tissue distributions among the compartments with a superficial absorption in the thallus and lateral branches and several hotspots in the oospheres of the female individuals. A preliminary speciation XAS analysis identified a distinct U speciation in the gametes-containing receptacles as a pseudo-autunite phosphate phase. Similarly, XAS measurements on the lateral branches (XANES) were not conclusive with regards to the occurrence of an alginate-U complex in these tissues. Nonetheless, the hypothesis that alginate may play a role in the speciation of U in the algal thallus tissues is still under consideration.
遗留放射性废物可被定义为 20 世纪中期民用核工业发展初期产生的放射性废物,当时废物储存和处理的规划并不完善。海洋环境是值得研究的环境领域之一,因为海底的某些特定位置存在遗留废物。海洋占地球服务的近 70%,是污染淡水的最大也是最终归宿。出于这个原因,需要对金属放射性核素在海洋生态系统中的积累生化机制进行长期研究。在这种情况下,褐藻区系可能具有生态相关性,因为它在沿海地区形成了大型且密集的藻床,并且可能是污染的重要生物量。本报告介绍了使用多尺度光谱和成像方法研究褐藻 Ascophyllum nodosum 中铀(U,核循环中使用的元素)生物积累的第一步。在 13°C 的封闭水族馆中,用定义量的 U(VI)(10 M)对 A. nodosum 标本进行污染。通过 ICP-MS 定量测定活藻的吸收,并通过结合电子显微镜成像(SEM)、X 射线吸收光谱(XAS)和微 X 射线荧光(μ-XRF)对各种藻区系进行定位研究。数据表明,褐藻能够通过主动生物积累机制浓缩 U(VI),在每天污染 200 小时后达到平衡状态。活生物体与干生物量之间的比较证实了前者存在应激反应过程,活标本的平均生物积累因子(BAF)为 10±2(与干生物量相比低 90%,为 142±5)。此外,这些结果为 A. nodosum 干生物量作为铀生物吸附剂的潜在用途开辟了新的前景。不同的部分 BAF(生物积累因子)范围从 3(对于叶状体)到 49(对于容器),导致铀在海藻内的分区。这表明容器(海藻的繁殖部分)具有更高的积累能力。SEM 图像突出显示了不同组织在各区系中的分布,叶状体和侧枝有表面吸收,而雌性个体的卵球中有多个热点。初步的 XAS 形态分析表明,在含有配子的容器中存在一种独特的 U 形态,为假钙铀矿磷酸盐相。同样,对侧枝(XANES)的 XAS 测量结果对于这些组织中是否存在藻酸盐-U 络合物并不确定。然而,藻酸盐可能在海藻组织中 U 的形态形成中起作用的假设仍在考虑之中。