文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

建立和评估 5 期慢性肾脏病患者血管钙化风险的列线图预测模型。

Establishment and evaluation of a nomogram prediction model for the risk of vascular calcification in stage 5 chronic kidney disease patients.

机构信息

Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, 613 W. Huangpu Avenue, Guangzhou, 510632, Guangdong, China.

Department of General Practice, Puning People's Hospital, Puning, 515300, Guangdong, China.

出版信息

Sci Rep. 2024 Jan 10;14(1):1025. doi: 10.1038/s41598-023-48275-2.


DOI:10.1038/s41598-023-48275-2
PMID:38200088
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10781805/
Abstract

Vascular calcification (VC) is a common complication of chronic kidney disease (CKD) that has a detrimental effect on patients' survival and prognosis. The aim of this study was to develop and validate a practical and reliable prediction model for VC in CKD5 patients. The medical records of 544 CKD5 patients were reviewed retrospectively. Multivariate logistic regression analysis was used to identify the independent risk factors for vascular calcification in patients with CKD5 and then created a nomogram prediction model. The area under the receiver operating characteristic curve (AUC), Hosmer-Lemeshow test, and decision curve analysis (DCA) were used to assess model performance. The patients were split into groups with normal and high serum uric acid levels, and the factors influencing these levels were investigated. Age, BUN, SUA, P and TG were independent risk factors for vascular calcification in CKD5 patients in the modeling group (P < 0.05). In the internal validation, the results of model showed that the AUC was 0.917. No significant divergence between the predicted probability of the nomogram and the actual incidence rate (x = 5.406, P = 0.753) was revealed by the calibration plot and HL test, thus confirming that the calibration was satisfactory. The external validation also showed good discrimination (AUC = 0.973). The calibration chart and HL test also demonstrated good consistency. Besides, the correlation analysis of serum uric acid levels in all CKD5 patients revealed that elevated uric acid levels may be related to gender, BUN, P, and TG.

摘要

血管钙化(VC)是慢性肾脏病(CKD)的常见并发症,对患者的生存和预后有不良影响。本研究旨在建立和验证 CKD5 患者 VC 的实用且可靠的预测模型。回顾性分析了 544 例 CKD5 患者的病历。采用多变量逻辑回归分析确定 CKD5 患者血管钙化的独立危险因素,并建立列线图预测模型。采用接受者操作特征曲线(ROC)下面积(AUC)、Hosmer-Lemeshow 检验和决策曲线分析(DCA)评估模型性能。将患者分为血清尿酸水平正常和升高的两组,探讨影响这些水平的因素。在建模组中,年龄、BUN、SUA、P 和 TG 是 CKD5 患者血管钙化的独立危险因素(P < 0.05)。内部验证结果显示,模型的 AUC 为 0.917。校准图和 HL 检验显示,列线图预测概率与实际发生率之间无显著差异(x = 5.406,P = 0.753),表明校准效果满意。外部验证也显示出良好的判别能力(AUC = 0.973)。校准图和 HL 检验也显示出良好的一致性。此外,对所有 CKD5 患者的血清尿酸水平进行相关分析显示,尿酸水平升高可能与性别、BUN、P 和 TG 有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f101/10781805/02c431e8da92/41598_2023_48275_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f101/10781805/9e06b58fe7ec/41598_2023_48275_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f101/10781805/4add772a3137/41598_2023_48275_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f101/10781805/66a77b632e02/41598_2023_48275_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f101/10781805/5b8e7a998dd6/41598_2023_48275_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f101/10781805/02c431e8da92/41598_2023_48275_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f101/10781805/9e06b58fe7ec/41598_2023_48275_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f101/10781805/4add772a3137/41598_2023_48275_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f101/10781805/66a77b632e02/41598_2023_48275_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f101/10781805/5b8e7a998dd6/41598_2023_48275_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f101/10781805/02c431e8da92/41598_2023_48275_Fig5_HTML.jpg

相似文献

[1]
Establishment and evaluation of a nomogram prediction model for the risk of vascular calcification in stage 5 chronic kidney disease patients.

Sci Rep. 2024-1-10

[2]
Development and Validation of a Risk-Prediction Nomogram for Preoperative Blood Type and Antibody Testing in Spinal Fusion Surgery.

Orthop Surg. 2024-1

[3]
Development and validation of a nomogram to predict the risk of peripheral artery disease in patients with type 2 diabetes mellitus.

Front Endocrinol (Lausanne). 2022

[4]
Establishment and validation of prediction model for atherosclerotic cardiovascular disease in patients with hyperuricemia.

Int J Rheum Dis. 2024-6

[5]
Nomogram Prediction for the Risk of Diabetic Foot in Patients With Type 2 Diabetes Mellitus.

Front Endocrinol (Lausanne). 2022

[6]
[Establishment and evaluation of early in-hospital death prediction model for patients with acute pancreatitis in intensive care unit].

Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2023-8

[7]
[Establishment and validation of a novel nomogram to predict overall survival after radical nephrectomy].

Zhonghua Zhong Liu Za Zhi. 2023-8-23

[8]
[Risk factor analysis on anastomotic leakage after laparoscopic surgery in rectal cancer patient with neoadjuvant therapy and establishment of a nomogram prediction model].

Zhonghua Wei Chang Wai Ke Za Zhi. 2019-8-25

[9]
Development and validation of a risk nomogram model for predicting pulmonary hypertension in patients with stage 3-5 chronic kidney disease.

Int Urol Nephrol. 2023-5

[10]
Nomogram to predict the risk of acute kidney injury in patients with diabetic ketoacidosis: an analysis of the MIMIC-III database.

BMC Endocr Disord. 2021-3-4

引用本文的文献

[1]
Development and validation of a nomogram for predicting calcification of arteriovenous access in hemodialysis patients.

Ren Fail. 2025-12

[2]
Establishment of an Early Prediction Model for Severe Fever With Thrombocytopenia Syndrome-Associated Encephalitis.

Immun Inflamm Dis. 2024-12

本文引用的文献

[1]
Vascular calcification: Molecular mechanisms and therapeutic interventions.

MedComm (2020). 2023-1-3

[2]
Targeting a Silent Disease: Vascular Calcification in Chronic Kidney Disease.

Int J Mol Sci. 2022-12-17

[3]
Molecular Mechanisms of Vascular Health: Insights From Vascular Aging and Calcification.

Arterioscler Thromb Vasc Biol. 2023-1

[4]
Vascular calcification in chronic kidney disease: contribution of ferroptosis?

Kidney Int. 2022-12

[5]
Coronary artery calcification in patients with advanced chronic kidney disease.

BMC Cardiovasc Disord. 2022-10-29

[6]
A Novel Quantitative Computer-Assisted Score Can Improve Repeatability in the Estimate of Vascular Calcifications at the Abdominal Aorta.

Nutrients. 2022-10-13

[7]
The Prevalence of Hyperuricemia and Its Correlates among Adults in China: Results from CNHS 2015-2017.

Nutrients. 2022-10-2

[8]
From past to future: Bibliometric analysis of global research productivity on nomogram (2000-2021).

Front Public Health. 2022

[9]
Mitochondria and vascular calcification in chronic kidney disease: Lessons learned from the past to improve future therapy.

J Cell Physiol. 2022-12

[10]
Association between dyslipidaemia and the risk of hyperuricaemia: a six-year longitudinal cohort study of elderly individuals in China.

Ann Med. 2022-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索