Brüggemann Daniel, Machat Martin R, Schomäcker Reinhard, Heshmat Mojgan
Institut für Chemie-Technische Chemie, Technische Universität Berlin, Straße des 17. Juni 124, D-10623 Berlin, Germany.
Covestro Deutschland AG, Kaiser-Wilhelm-Alle 60, D-51373 Leverkusen, Germany.
Polymers (Basel). 2023 Dec 31;16(1):136. doi: 10.3390/polym16010136.
The production of CO-containing polymers is still very demanding in terms of controlling the synthesis of products with pre-defined CO content and molecular weight. An elegant way of synthesising these polymers is via CO-containing building blocks, such as cyclic ethylene carbonate (cEC), via catalytic ring-opening polymerisation. However, to date, the mechanism of this reaction and control parameters have not been elucidated. In this work, using DFT-metadynamics simulations for exploiting the potential of the polymerisation process, we aim to shed more light on the mechanisms of the interaction between catalysts (in particular, the catalysts KVO, KPO, and NaSnO) and the cEC monomer in the propagation step of the polymeric chain and the occurring CO release. Confirming the simulation results via subsequent kinetics measurements indicates that, depending on the catalyst's characteristics, it can be attached reversibly to the polymeric chain during polymerisation, resulting in a defined lifetime of the activated polymer chain. The second anionic oxygen of the catalyst can promote the catalyst's transfer to another electrophilic cEC monomer, terminating the growth of the first chain and initiating the propagation of the new polymer chain. This transfer reaction is an essential step in controlling the molecular weight of the products.
就控制具有预定义一氧化碳含量和分子量的产品合成而言,含一氧化碳聚合物的生产仍然要求很高。合成这些聚合物的一种巧妙方法是通过含一氧化碳的结构单元,如环状碳酸亚乙酯(cEC),通过催化开环聚合反应来实现。然而,迄今为止,该反应的机理和控制参数尚未阐明。在这项工作中,我们使用密度泛函理论(DFT)元动力学模拟来探索聚合过程的潜力,旨在更深入地了解在聚合物链增长步骤中催化剂(特别是KVO、KPO和NaSnO催化剂)与cEC单体之间的相互作用机制以及所发生的一氧化碳释放。通过后续动力学测量证实模拟结果表明,根据催化剂的特性,它在聚合过程中可与聚合物链可逆连接,从而导致活化聚合物链具有确定的寿命。催化剂的第二个阴离子氧可促进催化剂转移至另一个亲电cEC单体,终止第一条链的生长并引发新聚合物链的增长。这种转移反应是控制产物分子量的关键步骤。