Suppr超能文献

通过静电纺丝合成CoMoO纳米纤维作为高效的全水解电催化剂。

Synthesis of CoMoO Nanofibers by Electrospinning as Efficient Electrocatalyst for Overall Water Splitting.

作者信息

Fan Jiahui, Chang Xin, Li Lu, Zhang Mingyi

机构信息

Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China.

出版信息

Molecules. 2023 Dec 19;29(1):7. doi: 10.3390/molecules29010007.

Abstract

To improve the traditional energy production and consumption of resources, the acceleration of the development of a clean and green assembly line is highly important. Hydrogen is considered one of the most ideal options. The method of production of hydrogen through water splitting constitutes the most attractive research. We synthesized CoMoO nanofibers by electrospinning along with post-heat treatment at different temperatures. CoMoO nanofibers show a superior activity for hydrogen evolution reaction (HER) and only demand an overpotential of 80 mV to achieve a current density of 10 mA cm. In particular, the CoMoO catalyst also delivers excellent performances of oxygen evolution reaction (OER) in 1 M KOH, which is a more complicated process that needs extra energy to launch. The CoMoO nanofibers also showed a superior stability in multiple CV cycles and maintained a catalytic activity for up to 80 h through chronopotentiometry tests. This is attributed mainly to a synergistic interaction between the different metallic elements that caused the activity of CoMoO beyond single oxides. This approach proved that bimetallic oxides are promising for energy production.

摘要

为改善传统能源生产和资源消耗状况,加速发展清洁环保的生产线至关重要。氢被认为是最理想的选择之一。通过水分解制氢的方法是最具吸引力的研究方向。我们通过静电纺丝并在不同温度下进行后热处理合成了CoMoO纳米纤维。CoMoO纳米纤维对析氢反应(HER)表现出优异的活性,仅需80 mV的过电位即可达到10 mA cm的电流密度。特别是,CoMoO催化剂在1 M KOH中也展现出优异的析氧反应(OER)性能,这是一个更复杂的过程,需要额外能量来启动。CoMoO纳米纤维在多个循环伏安(CV)循环中也表现出优异的稳定性,并通过计时电位法测试在长达80小时内保持催化活性。这主要归因于不同金属元素之间的协同相互作用,使得CoMoO的活性超过单一氧化物。该方法证明双金属氧化物在能源生产方面具有广阔前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e84/10779614/6ce4ef3722a9/molecules-29-00007-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验