Chang Yu-Cheng, Lin I-Chun, Chin Ning-Chien, Juang Sin-Ei, Chou Chia-Man
Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan.
Department of Orthopedics, Antai Tian-Sheng Memorial Hospital, Antai Medical Care Corporation, Pingtung 92842, Taiwan.
Molecules. 2023 Dec 30;29(1):218. doi: 10.3390/molecules29010218.
A multi-step procedure was effectively employed to synthesize innovative three-dimensional (3D) heterostructures encompassing sodium titanate (NaTiO) nanowire cores, an intermediate resorcinol-formaldehyde (RF) layer, and outer silver (Ag) nanoparticle sheaths, referred to as NaTiO@RF@Ag heterostructures. Initially, a one-step hydrothermal technique facilitated the direct growth of single-crystal NaTiO nanowires onto a flexible Ti foil. Subsequently, a two-step wet chemical process facilitated the sequential deposition of an RF layer and Ag nanoparticles onto the NaTiO nanowires at a low reaction temperature. Optimal concentrations of silver nitrate and L-ascorbic acid can lead to the cultivation of NaTiO@RF@Ag heterostructures exhibiting heightened surface-enhanced Raman scattering (SERS), which is particularly beneficial for the detection of rhodamine B (RhB) molecules. This phenomenon can be ascribed to the distinctive geometry of the NaTiO@RF@Ag heterostructures, which offer an increased number of hot spots and surface-active sites, thereby showcasing notable SERS enhancement, commendable reproducibility, and enduring stability over the long term. Furthermore, the NaTiO@RF@Ag heterostructures demonstrate remarkable follow-up as first-order chemical kinetic and recyclable photocatalysts for the photodecomposition of an RhB solution under UV light irradiation. This result can be attributed to the enhanced inhibition of electron-hole pair recombination and increased surface-active sites.
采用多步程序有效地合成了创新的三维(3D)异质结构,该结构包含钛酸钠(NaTiO)纳米线核心、中间的间苯二酚-甲醛(RF)层和外部的银(Ag)纳米颗粒外壳,称为NaTiO@RF@Ag异质结构。首先,一步水热技术促进了单晶NaTiO纳米线在柔性钛箔上的直接生长。随后,两步湿化学过程促进了RF层和Ag纳米颗粒在低反应温度下依次沉积到NaTiO纳米线上。硝酸银和L-抗坏血酸的最佳浓度可导致培养出具有增强的表面增强拉曼散射(SERS)的NaTiO@RF@Ag异质结构,这对罗丹明B(RhB)分子的检测特别有益。这种现象可归因于NaTiO@RF@Ag异质结构独特的几何形状,其提供了更多的热点和表面活性位点,从而展现出显著的SERS增强、良好的重现性和长期持久的稳定性。此外,NaTiO@RF@Ag异质结构作为紫外光照射下RhB溶液光分解的一级化学动力学和可回收光催化剂表现出显著的后续效果。这一结果可归因于对电子-空穴对复合的增强抑制和表面活性位点的增加。