Suppr超能文献

用于传感器网络碳排放监测的绿色物联网事件检测

Green IoT Event Detection for Carbon-Emission Monitoring in Sensor Networks.

作者信息

Fay Cormac D, Corcoran Brian, Diamond Dermot

机构信息

SMART Infrastructure Facility, Engineering and Information Sciences, University of Wollongong, Wollongong, NSW 2522, Australia.

School of Mechanical and Manufacturing Engineering, Faculty of Engineering and Computing, Dublin City University, Glasnevin, D09 V209 Dublin, Ireland.

出版信息

Sensors (Basel). 2023 Dec 27;24(1):162. doi: 10.3390/s24010162.

Abstract

This research addresses the intersection of low-power microcontroller technology and binary classification of events in the context of carbon-emission reduction. The study introduces an innovative approach leveraging microcontrollers for real-time event detection in a homogeneous hardware/firmware manner and faced with limited resources. This showcases their efficiency in processing sensor data and reducing power consumption without the need for extensive training sets. Two case studies focusing on landfill CO2 emissions and home energy usage demonstrate the feasibility and effectiveness of this approach. The findings highlight significant power savings achieved by minimizing data transmission during non-event periods (94.8-99.8%), in addition to presenting a sustainable alternative to traditional resource-intensive AI/ML platforms that comparatively draw and produce 20,000 times the amount of power and carbon emissions, respectively.

摘要

本研究探讨了低功耗微控制器技术与碳排放减少背景下事件的二元分类的交叉点。该研究引入了一种创新方法,以硬件/固件同构的方式利用微控制器进行实时事件检测,且面临资源有限的情况。这展示了它们在处理传感器数据和降低功耗方面的效率,而无需大量训练集。两项分别关注垃圾填埋场二氧化碳排放和家庭能源使用的案例研究证明了该方法的可行性和有效性。研究结果突出了在非事件期间通过最小化数据传输实现的显著节能效果(94.8 - 99.8%),此外,还为传统资源密集型人工智能/机器学习平台提供了一种可持续的替代方案,相比之下,传统平台分别消耗和产生的电量及碳排放量是其20000倍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3fd/10781252/ae9e5a06c430/sensors-24-00162-g001.jpg

相似文献

1
Green IoT Event Detection for Carbon-Emission Monitoring in Sensor Networks.
Sensors (Basel). 2023 Dec 27;24(1):162. doi: 10.3390/s24010162.
2
Electricity generation: options for reduction in carbon emissions.
Philos Trans A Math Phys Eng Sci. 2002 Aug 15;360(1797):1653-68. doi: 10.1098/rsta.2002.1025.
3
The influence factors of interprovincial power transmission on China's CO emissions.
Sci Prog. 2022 Oct-Dec;105(4):368504221137466. doi: 10.1177/00368504221137466.
7
Who shapes the embodied carbon dioxide emissions of interconnected power grids in China? A seasonal perspective.
J Environ Manage. 2022 Dec 15;324:116422. doi: 10.1016/j.jenvman.2022.116422. Epub 2022 Oct 8.
8
Dynamic modeling to analyze the impacts of carbon reduction policies, Iran's electricity industry.
Environ Monit Assess. 2023 Feb 1;195(2):350. doi: 10.1007/s10661-022-10897-w.
9
A Low Power IoT Sensor Node Architecture for Waste Management Within Smart Cities Context.
Sensors (Basel). 2018 Apr 21;18(4):1282. doi: 10.3390/s18041282.
10
The green behavioral effect of clean coal technology on China's power generation industry.
Sci Total Environ. 2019 Jul 20;675:286-294. doi: 10.1016/j.scitotenv.2019.04.132. Epub 2019 Apr 12.

本文引用的文献

1
How to estimate carbon footprint when training deep learning models? A guide and review.
Environ Res Commun. 2023 Nov 1;5(11):115014. doi: 10.1088/2515-7620/acf81b. Epub 2023 Nov 21.
2
Smart Buildings: Water Leakage Detection Using TinyML.
Sensors (Basel). 2023 Nov 16;23(22):9210. doi: 10.3390/s23229210.
3
Advanced IoT Pressure Monitoring System for Real-Time Landfill Gas Management.
Sensors (Basel). 2023 Aug 31;23(17):7574. doi: 10.3390/s23177574.
4
DDD TinyML: A TinyML-Based Driver Drowsiness Detection Model Using Deep Learning.
Sensors (Basel). 2023 Jun 18;23(12):5696. doi: 10.3390/s23125696.
5
A comprehensive review of greenhouse gas based on subject categories.
Sci Total Environ. 2023 Mar 25;866:161314. doi: 10.1016/j.scitotenv.2022.161314. Epub 2023 Jan 2.
6
Microcontroller Unit-Based Wireless Sensor Network Nodes: A Review.
Sensors (Basel). 2022 Nov 18;22(22):8937. doi: 10.3390/s22228937.
7
Analysis of environmental factors using AI and ML methods.
Sci Rep. 2022 Aug 2;12(1):13267. doi: 10.1038/s41598-022-16665-7.
8
Machine Learning for Wireless Sensor Networks Security: An Overview of Challenges and Issues.
Sensors (Basel). 2022 Jun 23;22(13):4730. doi: 10.3390/s22134730.
9
Low cost CO sensing: A simple microcontroller approach with calibration and field use.
HardwareX. 2020 Sep 1;8:e00136. doi: 10.1016/j.ohx.2020.e00136. eCollection 2020 Oct.
10
LED PEDD Discharge Photometry: Effects of Software Driven Measurements for Sensing Applications.
Sensors (Basel). 2022 Feb 16;22(4):1526. doi: 10.3390/s22041526.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验