文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

荧光超分辨率成像芯片用于基因沉默外泌体。

Fluorescence Super-Resolution Imaging Chip for Gene Silencing Exosomes.

机构信息

Advanced Photonics Center, School of Electronic Science & Engineering, Southeast University, Nanjing 210096, China.

出版信息

Sensors (Basel). 2023 Dec 28;24(1):173. doi: 10.3390/s24010173.


DOI:10.3390/s24010173
PMID:38203034
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10781284/
Abstract

Tumor cell-derived extracellular vesicles and their cargo of bioactive substances have gradually been recognized as novel biomarkers for cancer diagnosis. Meanwhile, the PD-L1 (Programmed Death-Ligand 1) protein, as an immune checkpoint molecule, is highly expressed on certain tumor cells and holds significant potential in immune therapy. In comparison to PD-L1 monoclonal antibodies, the inhibitory effect of PD-L1 siRNA (small interfering RNA) is more advantageous. In this article, we introduced a microfluidic chip integrating cell cultivation and exosome detection modules, which were intended for the investigation of the gene silencing effect of PD-L1 siRNA. Basically, cells were first cultured with PD-L1 siRNA in the chip. Then, the secreted exosomes were detected via super-resolution imaging, to validate the inhibitory effect of siRNA on PD-L1 expression. To be specific, a "sandwich" immunological structure was employed to detect exosomes secreted from HeLa cells. Immunofluorescence staining and DNA-PAINT (DNA Point Accumulation for Imaging in Nanoscale Topography) techniques were utilized to quantitatively analyze the PD-L1 proteins on HeLa exosomes, which enabled precise structural and content analysis of the exosomes. Compared with other existing PD-L1 detection methods, the advantages of our work include, first, the integration of microfluidic chips greatly simplifying the cell culture, gene silencing, and PD-L1 detection procedures. Second, the utilization of DNA-PAINT can provide an ultra-high spatial resolution, which is beneficial for exosomes due to their small sizes. Third, qPAINT could allow quantitative detection of PD-L1 with better precision. Hence, the combination of the microfluidic chip with DNA-PAINT could provide a more powerful integrated platform for the study of PD-L1-related tumor immunotherapy.

摘要

肿瘤细胞衍生的细胞外囊泡及其生物活性物质货物逐渐被认为是癌症诊断的新型生物标志物。同时,PD-L1(程序性死亡配体 1)蛋白作为一种免疫检查点分子,在某些肿瘤细胞上高度表达,在免疫治疗中具有重要潜力。与 PD-L1 单克隆抗体相比,PD-L1 siRNA(小干扰 RNA)的抑制效果更具优势。在本文中,我们介绍了一种集成细胞培养和外泌体检测模块的微流控芯片,用于研究 PD-L1 siRNA 的基因沉默效果。基本上,细胞首先在芯片中用 PD-L1 siRNA 培养。然后,通过超分辨率成像检测分泌的外泌体,以验证 siRNA 对 PD-L1 表达的抑制作用。具体来说,采用“三明治”免疫结构来检测 HeLa 细胞分泌的外泌体。免疫荧光染色和 DNA-PAINT(DNA 点积累用于纳米形貌成像)技术用于定量分析 HeLa 外泌体上的 PD-L1 蛋白,从而对外泌体进行精确的结构和内容分析。与其他现有的 PD-L1 检测方法相比,我们工作的优势包括:首先,微流控芯片的集成大大简化了细胞培养、基因沉默和 PD-L1 检测过程。其次,DNA-PAINT 的使用可以提供超高的空间分辨率,这对外泌体非常有利,因为它们的体积较小。第三,qPAINT 可以更精确地定量检测 PD-L1。因此,微流控芯片与 DNA-PAINT 的结合可以为 PD-L1 相关肿瘤免疫治疗的研究提供更强大的集成平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09e9/10781284/e94d6128a99d/sensors-24-00173-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09e9/10781284/e2802babcdaf/sensors-24-00173-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09e9/10781284/525a5f82b559/sensors-24-00173-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09e9/10781284/e8e80dd8756a/sensors-24-00173-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09e9/10781284/6dd03ed1f238/sensors-24-00173-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09e9/10781284/a7ae9e54709e/sensors-24-00173-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09e9/10781284/4771ebc1c9db/sensors-24-00173-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09e9/10781284/bdf0804c203a/sensors-24-00173-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09e9/10781284/e94d6128a99d/sensors-24-00173-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09e9/10781284/e2802babcdaf/sensors-24-00173-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09e9/10781284/525a5f82b559/sensors-24-00173-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09e9/10781284/e8e80dd8756a/sensors-24-00173-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09e9/10781284/6dd03ed1f238/sensors-24-00173-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09e9/10781284/a7ae9e54709e/sensors-24-00173-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09e9/10781284/4771ebc1c9db/sensors-24-00173-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09e9/10781284/bdf0804c203a/sensors-24-00173-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09e9/10781284/e94d6128a99d/sensors-24-00173-g008.jpg

相似文献

[1]
Fluorescence Super-Resolution Imaging Chip for Gene Silencing Exosomes.

Sensors (Basel). 2023-12-28

[2]
PD-L1 (B7-H1) Competes with the RNA Exosome to Regulate the DNA Damage Response and Can Be Targeted to Sensitize to Radiation or Chemotherapy.

Mol Cell. 2019-4-30

[3]
Quantitative analysis of multiple breast cancer biomarkers using DNA-PAINT.

Anal Methods. 2022-9-29

[4]
Transforming growth factor beta orchestrates PD-L1 enrichment in tumor-derived exosomes and mediates CD8 T-cell dysfunction regulating early phosphorylation of TCR signalome in breast cancer.

Carcinogenesis. 2021-2-11

[5]
Serum exosomal miR-16-5p functions as a tumor inhibitor and a new biomarker for PD-L1 inhibitor-dependent immunotherapy in lung adenocarcinoma by regulating PD-L1 expression.

Cancer Med. 2022-7

[6]
Exosomes-delivered PD-L1 siRNA and CTLA-4 siRNA protect against growth and tumor immune escape in colorectal cancer.

Genomics. 2023-7

[7]
Nanoplasmonic Sandwich Immunoassay for Tumor-Derived Exosome Detection and Exosomal PD-L1 Profiling.

ACS Sens. 2021-9-24

[8]
Immune checkpoint silencing using RNAi-incorporated nanoparticles enhances antitumor immunity and therapeutic efficacy compared with antibody-based approaches.

J Immunother Cancer. 2022-2

[9]
Clinical significance of PD-L1 expression in serum-derived exosomes in NSCLC patients.

J Transl Med. 2019-10-29

[10]
Mechanisms underlying low-clinical responses to PD-1/PD-L1 blocking antibodies in immunotherapy of cancer: a key role of exosomal PD-L1.

J Immunother Cancer. 2021-1

引用本文的文献

[1]
Recent Advancements in Imaging Techniques for Individual Extracellular Vesicles.

Molecules. 2024-12-10

本文引用的文献

[1]
The negative effect of concomitant medications on immunotherapy in non-small cell lung cancer: An umbrella review.

Int Immunopharmacol. 2023-11

[2]
Nanoscale imaging of tumor cell exosomes by expansion single molecule localization microscopy (ExSMLM).

Talanta. 2023-8-15

[3]
Extracellular Vesicles: New Classification and Tumor Immunosuppression.

Biology (Basel). 2023-1-10

[4]
Fast and Multiplexed Super Resolution Imaging of Fixed and Immunostained Cells with DNA-PAINT-ERS.

Curr Protoc. 2022-11

[5]
Cell-derived nanovesicle-mediated drug delivery to the brain: Principles and strategies for vesicle engineering.

Mol Ther. 2023-5-3

[6]
Quantitative analysis of multiple breast cancer biomarkers using DNA-PAINT.

Anal Methods. 2022-9-29

[7]
Therapeutic siRNA: State-of-the-Art and Future Perspectives.

BioDrugs. 2022-9

[8]
Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy.

Signal Transduct Target Ther. 2022-6-20

[9]
Non-viral siRNA delivery to T cells: Challenges and opportunities in cancer immunotherapy.

Biomaterials. 2022-7

[10]
Triple-color fluorescence co-localization of PD-L1-overexpressing cancer exosomes.

Mikrochim Acta. 2022-4-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索