Zhou Xinzhi, He Min, Zhou Dongming, Xu Feifei, Jeon Seunggil
School of Information, Yunnan University, Kunming 650504, China.
Samsung Electronics Co., Ltd., 129 Samseong-ro, Yeongtong-gu, Suwon-si 16677, Republic of Korea.
Sensors (Basel). 2023 Dec 29;24(1):203. doi: 10.3390/s24010203.
Infrared and visible image fusion aims to produce an informative fused image for the same scene by integrating the complementary information from two source images. Most deep-learning-based fusion networks utilize small kernel-size convolution to extract features from a local receptive field or design unlearnable fusion strategies to fuse features, which limits the feature representation capabilities and fusion performance of the network. Therefore, a novel end-to-end infrared and visible image fusion framework called DTFusion is proposed to address these problems. A residual PConv-ConvNeXt module (RPCM) and dense connections are introduced into the encoder network to efficiently extract features with larger receptive fields. In addition, a texture-contrast compensation module (TCCM) with gradient residuals and an attention mechanism is designed to compensate for the texture details and contrast of features. The fused features are reconstructed through four convolutional layers to generate a fused image with rich scene information. Experiments on public datasets show that DTFusion outperforms other state-of-the-art fusion methods in both subjective vision and objective metrics.
红外与可见光图像融合旨在通过整合来自两个源图像的互补信息,为同一场景生成一幅信息丰富的融合图像。大多数基于深度学习的融合网络利用小核尺寸卷积从局部感受野提取特征,或者设计不可学习的融合策略来融合特征,这限制了网络的特征表示能力和融合性能。因此,提出了一种名为DTFusion的新型端到端红外与可见光图像融合框架来解决这些问题。在编码器网络中引入了一个残差PConv-ConvNeXt模块(RPCM)和密集连接,以有效地提取具有更大感受野的特征。此外,设计了一个具有梯度残差和注意力机制的纹理对比度补偿模块(TCCM),以补偿特征的纹理细节和对比度。融合后的特征通过四层卷积进行重构,以生成一幅具有丰富场景信息的融合图像。在公共数据集上的实验表明,DTFusion在主观视觉和客观指标方面均优于其他现有最先进的融合方法。