Skin Cancer Research Group, Biomedical Research Institute INCLIVA, 46010 Valencia, Spain.
Department of Pathology, University of Valencia, 46010 Valencia, Spain.
Int J Mol Sci. 2023 Dec 25;25(1):318. doi: 10.3390/ijms25010318.
Current diagnostic algorithms are insufficient for the optimal clinical and therapeutic management of cutaneous spitzoid tumors, particularly atypical spitzoid tumors (AST). Therefore, it is crucial to identify new markers that allow for reliable and reproducible diagnostic assessment and can also be used as a predictive tool to anticipate the individual malignant potential of each patient, leading to tailored individual therapy. Using Reduced Representation Bisulfite Sequencing (RRBS), we studied genome-wide methylation profiles of a series of Spitz nevi (SN), spitzoid melanoma (SM), and AST. We established a diagnostic algorithm based on the methylation status of seven cg sites located in (Tektin 4 Pseudogene 2), (Myosin ID), and (PMF1-BGLAP Readthrough), which allows the distinction between SN and SM but is also capable of subclassifying AST according to their similarity to the methylation levels of Spitz nevi or spitzoid melanoma. Thus, our epigenetic algorithm can predict the risk level of AST and predict its potential clinical outcomes.
目前的诊断算法不足以实现皮肤 Spitz 样肿瘤(尤其是非典型 Spitz 样肿瘤[AST])的最佳临床和治疗管理。因此,确定新的标志物至关重要,这些标志物可以进行可靠且可重复的诊断评估,并且还可以用作预测工具,以预测每位患者的个体恶性潜能,从而实现个体化治疗。使用简化重亚硫酸盐测序(RRBS),我们研究了一系列 Spitz 痣(SN)、Spitz 样黑色素瘤(SM)和 AST 的全基因组甲基化图谱。我们基于位于 (Tektin 4 假基因 2)、 (肌球蛋白 ID)和 (PMF1-BGLAP 通读)中的七个 cg 位点的甲基化状态建立了一种诊断算法,该算法能够区分 SN 和 SM,但也能够根据其与 Spitz 痣或 Spitz 样黑色素瘤甲基化水平的相似性对 AST 进行亚分类。因此,我们的表观遗传算法可以预测 AST 的风险水平,并预测其潜在的临床结果。