Suppr超能文献

制备具有β-氢氧化镍/化学气相沉积石墨烯/三维泡沫镍复合结构的电极以增强超级电容器的电容特性

Preparation of Electrodes with β-Nickel Hydroxide/CVD-Graphene/3D-Nickel Foam Composite Structures to Enhance the Capacitance Characteristics of Supercapacitors.

作者信息

Lu Yang-Ming, Hong Sheng-Huai

机构信息

Department of Electrical Engineering, National University of Tainan, Tainan 7005, Taiwan.

出版信息

Materials (Basel). 2023 Dec 20;17(1):23. doi: 10.3390/ma17010023.

Abstract

Supercapacitors have the characteristics of high power density, long cycle life, and fast charge and discharge rates, making them promising alternatives to traditional capacitors and batteries. The use of transition-metal compounds as electrode materials for supercapacitors has been a compelling research topic in recent years because their use can effectively enhance the electrical performance of supercapacitors. The current research on capacitor electrode materials can mainly be divided into the following three categories: carbon-based materials, metal oxides, and conductive polymers. Nickel hydroxide (Ni(OH)) is a potential electrode material for use in supercapacitors. Depending on the preparation conditions, two crystal phases of nickel hydroxide, α and β, can be produced. When compared to α-NiOH, the structure of β-Ni(OH) does not experience ion intercalation. As a result, the carrier transmission rate of α-Ni(OH) is slower, and its specific capacitance value is smaller. Its carrier transport rate can be improved by adding conductive materials, such as graphene. β-Ni(OH) was chosen as an electrode material for a supercapacitor in this study. Homemade low-pressure chemical vapor deposition graphene (LPCVD-Graphene) conductive material was introduced to modify β-Ni(OH) in order to increase its carrier transport rate. The LPCVD method was used to grow high-quality graphene films on three-dimensional (3D) nickel foam substrates. Then, a hydrothermal synthesis method was used to grow β-Ni(OH) nanostructures on the 3D graphene/nickel foam substrate. In order to improve the electrical properties of the composite structure, a high-quality graphene layer was incorporated between the nickel hydroxide and the 3D nickel foam substrate. The effect of the conductive graphene layer on the growth of β-Ni(OH), as well as its electrical properties and electrochemical performance, was studied. When this β-Ni(OH)/CVD-Graphene/3D-NF (nickel foam) material was used as the working electrodes of the supercapacitor under a current density of 1 A/g and 3 A/g, they exhibited a specific capacitance of 2015 F/g and 1218.9 F/g, respectively. This capacitance value is 2.62 times higher than that of the structure without modification with a graphene layer. The capacitance value remains at 99.2% even after 1000 consecutive charge and discharge cycles at a current density of 20 A/g. This value also improved compared to the structure without graphene layer modification (94.7%).

摘要

超级电容器具有高功率密度、长循环寿命和快速充放电速率的特点,使其成为传统电容器和电池的有前景的替代品。近年来,使用过渡金属化合物作为超级电容器的电极材料一直是一个引人注目的研究课题,因为它们的使用可以有效地提高超级电容器的电性能。目前对电容器电极材料的研究主要可分为以下三类:碳基材料、金属氧化物和导电聚合物。氢氧化镍(Ni(OH)₂)是一种用于超级电容器的潜在电极材料。根据制备条件,可以生产出氢氧化镍的两种晶相,α相和β相。与α-Ni(OH)₂相比,β-Ni(OH)₂的结构不会发生离子嵌入。因此,α-Ni(OH)₂的载流子传输速率较慢,其比电容值较小。通过添加导电材料,如石墨烯,可以提高其载流子传输速率。本研究选择β-Ni(OH)₂作为超级电容器的电极材料。引入自制的低压化学气相沉积石墨烯(LPCVD-石墨烯)导电材料对β-Ni(OH)₂进行改性,以提高其载流子传输速率。采用LPCVD方法在三维(3D)泡沫镍基底上生长高质量的石墨烯薄膜。然后,采用水热合成法在3D石墨烯/泡沫镍基底上生长β-Ni(OH)₂纳米结构。为了改善复合结构的电学性能,在氢氧化镍和3D泡沫镍基底之间引入了一层高质量的石墨烯层。研究了导电石墨烯层对β-Ni(OH)₂生长及其电学性能和电化学性能的影响。当将这种β-Ni(OH)₂/CVD-石墨烯/3D-NF(泡沫镍)材料用作超级电容器的工作电极时,在电流密度为1 A/g和3 A/g的情况下,它们分别表现出2015 F/g和1218.9 F/g的比电容。该电容值比未用石墨烯层改性的结构高2.62倍。即使在电流密度为20 A/g的情况下连续进行1000次充放电循环后,电容值仍保持在99.2%。与未用石墨烯层改性的结构(94.7%)相比,该值也有所提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0ce/10779767/3c3ae835b3c8/materials-17-00023-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验