Suppr超能文献

维生素对尿苷5'-二磷酸葡萄糖醛酸基转移酶A10和B7的抑制作用:来自计算机模拟和体外研究的见解

Inhibition of Uridine 5'-diphospho-glucuronosyltransferases A10 and B7 by vitamins: insights from in silico and in vitro studies.

作者信息

Pande Sonal, Patel Chirag A, Dhameliya Tejas M, Beladiya Jayesh, Parikh Palak, Kachhadiya Radhika, Dholakia Sandip

机构信息

Gujarat Technological University, Ahmedabad, India.

Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380009 India.

出版信息

In Silico Pharmacol. 2024 Jan 8;12(1):8. doi: 10.1007/s40203-023-00182-0. eCollection 2024.

Abstract

UNLABELLED

Uridine 5'-diphospho-glucuronosyltransferases (UGTs) have been considered as a family of enzymes responsible for the glucuronidation process, a crucial phase II detoxification reaction. Among the various UGT isoforms, UGTs A10 and B7 have garnered significant attention due to their broad substrate specificity and involvement in the metabolism of numerous compounds. Recent studies have suggested that certain vitamins may exert inhibitory effects on UGT activity, thereby influencing the metabolism of drugs, environmental toxins, and endogenous substances, ultimately impacting their biological activities. In the present study, the inhibition potential of vitamins (A, B1, B2, B3, B5, B6, B7, B9, D3, E, and C) on UGT1A10 and UGT2B7 was determined using in silico and in vitro approaches. A 3-dimensional model of UGT1A10 and UGT2B7 enzymes was built using Swiss Model, ITASSER, and ROSETTA and verified using Ramachandran plot and SAVES tools. Molecular docking studies revealed that vitamins interact with UGT1A10 and UGT2B7 enzymes by binding within the active site pocket and interacting with residues. Among all vitamins, the highest binding affinity predicted by molecular docking was - 8.61 kcal/mol with vitamin B1. The in vitro studies results demonstrated the inhibition of the glucuronidation activity of UGTs by vitamins A, B1, B2, B6, B9, C, D, and E, with IC values of 3.28 ± 1.07 µg/mL, 24.21 ± 1.11 µg/mL, 3.69 ± 1.02 µg/mL, 23.60 ± 1.08 µg/mL, 6.77 ± 1.08 µg/mL, 83.95 ± 1.09 µg/ml, 3.27 ± 1.13 µg/mL and 3.89 ± 1.12 µg/mL, respectively. These studies provided the valuable insights into the mechanisms underlying drug-vitamins interactions and have the potential to guide personalized medicine approaches, optimizing therapeutic outcomes, and ensuring patient safety. Indeed, further research in the area of UGT (UDP-glucuronosyltransferase) inhibition by vitamins is essential to fully understand the clinical relevance and implications of these interactions. UGTs play a crucial role in the metabolism and elimination of various drugs, toxins, and endogenous compounds in the body. Therefore, any factors that can modulate UGT activity, including vitamins, can have implications for drug metabolism, drug-drug interactions, and overall health.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s40203-023-00182-0.

摘要

未标注

尿苷5'-二磷酸葡萄糖醛酸基转移酶(UGTs)被认为是负责葡萄糖醛酸化过程的一族酶,这是一个关键的II期解毒反应。在各种UGT同工型中,UGT A10和B7因其广泛的底物特异性以及参与众多化合物的代谢而备受关注。最近的研究表明,某些维生素可能对UGT活性产生抑制作用,从而影响药物、环境毒素和内源性物质的代谢,最终影响它们的生物活性。在本研究中,使用计算机模拟和体外方法确定了维生素(A、B1、B2、B3、B5、B6、B7、B9、D3、E和C)对UGT1A10和UGT2B7的抑制潜力。使用Swiss Model、ITASSER和ROSETTA构建了UGT1A10和UGT2B7酶的三维模型,并使用拉氏图和SAVES工具进行了验证。分子对接研究表明,维生素通过结合在活性位点口袋内并与残基相互作用,与UGT1A10和UGT2B7酶相互作用。在所有维生素中,分子对接预测的最高结合亲和力为与维生素B1的-8.61千卡/摩尔。体外研究结果表明,维生素A、B1、B2、B6、B9、C、D和E抑制了UGTs的葡萄糖醛酸化活性,IC值分别为3.28±1.07微克/毫升、24.21±1.11微克/毫升、3.69±1.02微克/毫升、23.60±1.08微克/毫升、6.77±1.08微克/毫升、83.95±1.09微克/毫升、3.27±1.13微克/毫升和3.89±1.12微克/毫升。这些研究为药物-维生素相互作用的潜在机制提供了有价值的见解,并有潜力指导个性化医疗方法、优化治疗效果并确保患者安全。事实上,在维生素对UGT(尿苷二磷酸葡萄糖醛酸基转移酶)抑制领域的进一步研究对于充分理解这些相互作用的临床相关性和影响至关重要。UGTs在体内各种药物、毒素和内源性化合物的代谢和消除中起着关键作用。因此,任何能够调节UGT活性的因素,包括维生素,都可能对药物代谢、药物-药物相互作用和整体健康产生影响。

补充信息

在线版本包含可在10.1007/s40203-023-00182-0获取的补充材料。

相似文献

1
Inhibition of Uridine 5'-diphospho-glucuronosyltransferases A10 and B7 by vitamins: insights from in silico and in vitro studies.
In Silico Pharmacol. 2024 Jan 8;12(1):8. doi: 10.1007/s40203-023-00182-0. eCollection 2024.
2
The Inhibition of UDP-Glucuronosyltransferase (UGT) Isoforms by Praeruptorin A and B.
Phytother Res. 2016 Nov;30(11):1872-1878. doi: 10.1002/ptr.5697. Epub 2016 Aug 18.
3
Everolimus-inhibited multiple isoforms of UDP-glucuronosyltransferases (UGTs).
Xenobiotica. 2018 May;48(5):452-458. doi: 10.1080/00498254.2017.1335917. Epub 2017 Jun 30.
4
The inhibition of UDP-glucuronosyltransferases (UGTs) by vitamin A.
Xenobiotica. 2017 May;47(5):376-381. doi: 10.1080/00498254.2016.1198841. Epub 2016 Jun 30.
5
Inhibition of UDP-Glucuronosyltransferase Enzymes by Major Cannabinoids and Their Metabolites.
Drug Metab Dispos. 2021 Dec;49(12):1081-1089. doi: 10.1124/dmd.121.000530. Epub 2021 Sep 7.
6
Glucuronidation of active tamoxifen metabolites by the human UDP glucuronosyltransferases.
Drug Metab Dispos. 2007 Nov;35(11):2006-14. doi: 10.1124/dmd.107.017145. Epub 2007 Jul 30.
7
Per- and polyfluoroalkyl substances display structure-dependent inhibition towards UDP-glucuronosyltransferases.
Environ Pollut. 2019 Nov;254(Pt B):113093. doi: 10.1016/j.envpol.2019.113093. Epub 2019 Aug 21.
8
Inhibition of UDP-glucuronosyltransferases (UGTs) by bromophenols (BPs).
Chemosphere. 2020 Jan;238:124645. doi: 10.1016/j.chemosphere.2019.124645. Epub 2019 Aug 24.
9
Structure and Protein-Protein Interactions of Human UDP-Glucuronosyltransferases.
Front Pharmacol. 2016 Oct 24;7:388. doi: 10.3389/fphar.2016.00388. eCollection 2016.
10
Enantioselective inhibition of carprofen towards UDP-glucuronosyltransferase (UGT) 2B7.
Chirality. 2015 Mar;27(3):189-93. doi: 10.1002/chir.22412. Epub 2014 Dec 12.

本文引用的文献

4
5
Cannabinoids and drug metabolizing enzymes: potential for drug-drug interactions and implications for drug safety and efficacy.
Expert Rev Clin Pharmacol. 2022 Dec;15(12):1443-1460. doi: 10.1080/17512433.2022.2148655. Epub 2022 Dec 1.
6
In vitro metabolism of the new antifungal dapaconazole using liver microsomes.
Drug Metab Pharmacokinet. 2022 Dec;47:100475. doi: 10.1016/j.dmpk.2022.100475. Epub 2022 Sep 20.
7
The Glycosyltransferase Pathway: An Integrated Analysis of the Cell Metabolome.
Metabolites. 2022 Oct 21;12(10):1006. doi: 10.3390/metabo12101006.
9
Glycosyltransferase engineering and multi-glycosylation routes development facilitating synthesis of high-intensity sweetener mogrosides.
iScience. 2022 Sep 27;25(10):105222. doi: 10.1016/j.isci.2022.105222. eCollection 2022 Oct 21.
10
Predicting Regioselectivity of AO, CYP, FMO, and UGT Metabolism Using Quantum Mechanical Simulations and Machine Learning.
J Med Chem. 2022 Oct 27;65(20):14066-14081. doi: 10.1021/acs.jmedchem.2c01303. Epub 2022 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验