The Ragon Institute of Mass General, Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA 02139, USA.
Department of Biological Engineering, MIT, Cambridge, MA 02139, USA.
Science. 2024 Jan 12;383(6679):205-211. doi: 10.1126/science.adi1763. Epub 2024 Jan 11.
Antibodies are produced at high rates to provide immunoprotection, which puts pressure on the B cell translational machinery. Here, we identified a pattern of codon usage conserved across antibody genes. One feature thereof is the hyperutilization of codons that lack genome-encoded Watson-Crick transfer RNAs (tRNAs), instead relying on the posttranscriptional tRNA modification inosine (I34), which expands the decoding capacity of specific tRNAs through wobbling. Antibody-secreting cells had increased I34 levels and were more reliant on I34 for protein production than naïve B cells. Furthermore, antibody I34-dependent codon usage may influence B cell passage through regulatory checkpoints. Our work elucidates the interface between the tRNA pool and protein production in the immune system and has implications for the design and selection of antibodies for vaccines and therapeutics.
抗体以高速度产生以提供免疫保护,这给 B 细胞翻译机制带来了压力。在这里,我们确定了抗体基因中保守的密码子使用模式。其特征之一是过度利用缺乏基因组编码的 Watson-Crick 转移 RNA(tRNA)的密码子,而是依赖于转录后 tRNA 修饰次黄嘌呤(I34),通过摆动扩展特定 tRNA 的解码能力。分泌抗体的细胞增加了 I34 水平,并且比幼稚 B 细胞更依赖于 I34 进行蛋白质生产。此外,抗体 I34 依赖性密码子使用可能会影响 B 细胞通过调节检查点。我们的工作阐明了免疫系统中 tRNA 池和蛋白质生产之间的界面,这对疫苗和治疗性抗体的设计和选择具有重要意义。