Suppr超能文献

基于人工智能的急性髓系白血病预测模型:一项使用真实数据的DATAML注册研究。

Artificial intelligence-based prediction models for acute myeloid leukemia using real-life data: A DATAML registry study.

作者信息

Didi Ibrahim, Alliot Jean-Marc, Dumas Pierre-Yves, Vergez François, Tavitian Suzanne, Largeaud Laëtitia, Bidet Audrey, Rieu Jean-Baptiste, Luquet Isabelle, Lechevalier Nicolas, Delabesse Eric, Sarry Audrey, De Grande Anne-Charlotte, Bérard Emilie, Pigneux Arnaud, Récher Christian, Simoncini David, Bertoli Sarah

机构信息

École Polytechnique, Palaiseau, France.

Centre Hospitalo-Universitaire de Toulouse, Toulouse, France.

出版信息

Leuk Res. 2024 Jan;136:107437. doi: 10.1016/j.leukres.2024.107437. Epub 2024 Jan 9.

Abstract

We designed artificial intelligence-based prediction models (AIPM) using 52 diagnostic variables from 3687 patients included in the DATAML registry treated with intensive chemotherapy (IC, N = 3030) or azacitidine (AZA, N = 657) for an acute myeloid leukemia (AML). A neural network called multilayer perceptron (MLP) achieved a prediction accuracy for overall survival (OS) of 68.5% and 62.1% in the IC and AZA cohorts, respectively. The Boruta algorithm could select the most important variables for prediction without decreasing accuracy. Thirteen features were retained with this algorithm in the IC cohort: age, cytogenetic risk, white blood cells count, LDH, platelet count, albumin, MPO expression, mean corpuscular volume, CD117 expression, NPM1 mutation, AML status (de novo or secondary), multilineage dysplasia and ASXL1 mutation; and 7 variables in the AZA cohort: blood blasts, serum ferritin, CD56, LDH, hemoglobin, CD13 and disseminated intravascular coagulation (DIC). We believe that AIPM could help hematologists to deal with the huge amount of data available at diagnosis, enabling them to have an OS estimation and guide their treatment choice. Our registry-based AIPM could offer a large real-life dataset with original and exhaustive features and select a low number of diagnostic features with an equivalent accuracy of prediction, more appropriate to routine practice.

摘要

我们使用来自DATAML注册库中3687例接受强化化疗(IC,n = 3030)或阿扎胞苷(AZA,n = 657)治疗的急性髓系白血病(AML)患者的52个诊断变量,设计了基于人工智能的预测模型(AIPM)。一种名为多层感知器(MLP)的神经网络在IC组和AZA组中对总生存期(OS)的预测准确率分别达到了68.5%和62.1%。Boruta算法可以选择最重要的预测变量而不降低准确性。该算法在IC组中保留了13个特征:年龄、细胞遗传学风险、白细胞计数、乳酸脱氢酶、血小板计数、白蛋白、髓过氧化物酶表达、平均红细胞体积、CD117表达、核仁磷酸蛋白1突变、AML状态(初发或继发)、多系发育异常和ASXL1突变;在AZA组中保留了7个变量:原始细胞、血清铁蛋白、CD56、乳酸脱氢酶、血红蛋白、CD13和弥散性血管内凝血(DIC)。我们认为AIPM可以帮助血液科医生处理诊断时可用的大量数据,使他们能够进行OS估计并指导治疗选择。我们基于注册库的AIPM可以提供一个具有原始且详尽特征的大型真实世界数据集,并选择少量具有同等预测准确性的诊断特征,更适合常规实践。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验