Suppr超能文献

应用 Boruta 算法评估巴基斯坦旁遮普省南部 5 岁以下儿童营养不良的多维决定因素。

Application of the Boruta algorithm to assess the multidimensional determinants of malnutrition among children under five years living in southern Punjab, Pakistan.

机构信息

Department of Public Health, University of the Punjab, Lahore, Pakistan.

National Institute of Food Sciences and Technology, University of Agriculture, Faisalabad, Pakistan.

出版信息

BMC Public Health. 2024 Jan 12;24(1):167. doi: 10.1186/s12889-024-17701-z.

Abstract

BACKGROUND

Malnutrition causes nutrient deficiencies that have both physical and clinical consequences in severe acute malnutrition children. Globally, there were 47 million wasted children under the age of five in 2019. One in four were located in sub-Saharan Africa, with half being in South Asia. This study aims to apply the Boruta algorithm to identify the determinants of undernutrition among children under five living in Dera Ghazi Khan, one of the marginalized districts of densely populated Punjab Province in Pakistan.

METHODS

A multicenter cross-sectional study design was used to collect data from 185 children with severe acute malnutrition aged under five years visiting the OTPs centers located in Dera Ghazi Khan, Punjab, Pakistan. A purposive sampling technique was used to collect data using a pretested structured questionnaire from parents/caregivers regarding family sociodemographic characteristics, child nutrition, and biological and healthcare characteristics. Anthropometric measurements, including height, weight, and mid-upper arm circumference, were collected. The Boruta models were used to incorporate the children's anthropometric, nutritional, and household factors to determine the important predictive variables for undernutrition using the Boruta package in R studio.

RESULTS

This study included 185 children, with a mean age of 15.36 ± 10.23 months and an MUAC of 10.19 ± 0.96 cm. The Boruta analysis identifies age, mid-upper arm circumference, weaning practices, and immunization status as important predictors of undernutrition. Income per month, exclusive breastfeeding, and immunization status were found to be key factors of undernutrition in children under the age of five.

CONCLUSION

This study highlights age, mid-upper arm circumference, weaning practices, and immunization status as key determinants of weight-for-height and weight-for-age in children under five years. It also suggests that economic context may influence undernutrition. The findings can guide targeted strategies for combating undernutrition.

摘要

背景

营养不良会导致营养缺乏,从而对严重急性营养不良儿童造成身体和临床影响。在 2019 年,全球有 4700 万五岁以下消瘦儿童。其中四分之一位于撒哈拉以南非洲,一半位于南亚。本研究旨在应用 Boruta 算法确定生活在巴基斯坦人口稠密旁遮普省边缘化地区德拉加济汗的五岁以下儿童营养不良的决定因素。

方法

采用多中心横断面研究设计,从位于巴基斯坦旁遮普省德拉加济汗的 OTP 中心就诊的 185 名五岁以下严重急性营养不良儿童中收集数据。采用目的抽样技术,使用经过预测试的结构化问卷从父母/照顾者那里收集有关家庭社会人口统计学特征、儿童营养以及生物和保健特征的数据。收集了身高、体重和中上臂围等人体测量学测量值。使用 Boruta 模型将儿童的人体测量、营养和家庭因素纳入其中,以确定 Boruta 包在 R 工作室中用于确定营养不良的重要预测变量。

结果

本研究包括 185 名儿童,平均年龄为 15.36±10.23 个月,MUAC 为 10.19±0.96 cm。Boruta 分析确定年龄、中上臂围、断奶实践和免疫接种状况是营养不良的重要预测因素。月收入、纯母乳喂养和免疫接种状况是五岁以下儿童营养不良的关键因素。

结论

本研究强调年龄、中上臂围、断奶实践和免疫接种状况是五岁以下儿童身高体重和年龄体重的关键决定因素。它还表明经济背景可能会影响营养不良。研究结果可以指导针对营养不良的有针对性战略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85b3/10787446/785ec53893cd/12889_2024_17701_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验