Wang Chun, Deng Xin, Li Lei, Li Mei
Department of Integrated TCM & Western Medicine, Mengcheng County Second People's Hospital, Anhui, 233500, People's Republic of China.
Department of Cardiology, Mengcheng County Second People's Hospital, Anhui, 233500, People's Republic of China.
Pharmgenomics Pers Med. 2024 Jan 9;17:13-26. doi: 10.2147/PGPM.S436235. eCollection 2024.
Mitochondrial DNA (mtDNA) mutations are associated with essential hypertension (EH), but the molecular mechanism remains largely unknown.
The aim of this study is to explore the association between mtDNA mutations and EH.
Two maternally inherited families with EH are underwent clinical, genetic and biochemical assessments. mtDNA mutations are screened by PCR-Sanger sequencing and phylogenetic, and bioinformatics analyses are performed to evaluate the pathogenicity of mtDNA mutations. We also generate cytoplasmic hybrid (cybrid) cell lines to analysis mitochondrial functions.
Matrilineal relatives exhibit variable degree of clinical phenotypes. Molecular analysis reveals the presence of m.A14693G and m.A14696G mutations in two pedigrees. Notably, the m.A14693G mutation occurs at position 54 in the TψC loop of tRNA, a position which is critical for post-transcriptionally modification of tRNA. While the m.A14696G mutation creates a novel base-pairing (51C-64G). Bioinformatic analysis shows that these mutations alter tRNA secondary structure. Additionally, patients with tRNA mutations exhibit markedly decreased in mtDNA copy number, mitochondrial membrane potential (MMP) and ATP, whereas the levels of reactive oxygen species (ROS) increase significantly.
The m.A14696G and m.A14693G mutations lead to failure in tRNA metabolism and cause mitochondrial dysfunction that is responsible for EH.
线粒体DNA(mtDNA)突变与原发性高血压(EH)相关,但分子机制仍 largely未知。
本研究旨在探讨mtDNA突变与EH之间的关联。
对两个患有EH的母系遗传家族进行临床、遗传和生化评估。通过PCR-Sanger测序及系统发育分析筛选mtDNA突变,并进行生物信息学分析以评估mtDNA突变的致病性。我们还构建了胞质杂种(cybrid)细胞系以分析线粒体功能。
母系亲属表现出不同程度的临床表型。分子分析显示两个家系中存在m.A14693G和m.A14696G突变。值得注意的是,m.A14693G突变发生在tRNA的TψC环的第54位,该位置对tRNA的转录后修饰至关重要。而m.A14696G突变形成了一个新的碱基对(51C-64G)。生物信息学分析表明这些突变改变了tRNA二级结构。此外,携带tRNA突变的患者mtDNA拷贝数、线粒体膜电位(MMP)和ATP明显降低,而活性氧(ROS)水平显著升高。
m.A14696G和m.A14693G突变导致tRNA代谢失败并引起线粒体功能障碍,这是导致EH的原因。