Ochonma Prince, Gao Xun, Gadikota Greeshma
Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States.
School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States.
Acc Chem Res. 2024 Feb 6;57(3):267-274. doi: 10.1021/acs.accounts.3c00482. Epub 2024 Jan 16.
ConspectusAchieving carbon neutrality requires realizing scalable advances in energy- and material-efficient pathways to capture, convert, store, and remove anthropogenic CO emission in air and flue gas while cogenerating multiple high-value products. To this end, earth-abundant Ca- and Mg-bearing alkaline resources can be harnessed to cogenerate Ca- and Mg-hydroxide, silica, H, O, and a leachate bearing high-value metals in an electrochemical approach with the generation of a pH gradient, which is a significant departure from existing pH-swing-based approaches. To accelerate CO capture and mineralization, CO in dilute sources is captured using solvents to produce CO-loaded solvents. CO-loaded solvents are reacted Ca- and Mg-bearing hydroxides to produce Ca- and Mg-carbonates while regenerating the solvents. These carbonates can be used as a temporary or permanent store of CO emissions. When carbonates are used as a temporary store of CO emissions, electrochemical sorbent regeneration pathways can be harnessed to produce high-purity CO while regenerating Ca- and Mg-hydroxide and coproducing H and O. Figure 1 is a schematic representation of this integrated approach.Tuning the molecular-scale and nanoscale interactions underlying these reactive crystallization mechanisms for carbon transformations is crucial for achieving kinetic, chemical, and morphological controls over these pathways. To this end, the feasibility of (i) crystallizing Ca- and Mg-hydroxide during the electrochemical desilication of earth-abundant alkaline industrial residues, (ii) accelerating the conversion of Ca- and Mg-carbonates for temporary or permanent carbon storage by harnessing regenerable solvents, and (iii) regenerating Ca- and Mg-hydroxide while coproducing high-purity CO, O, and H electrochemically is established.Evidence of the fractionation of heterogeneous slag to coproduce silica, Ca- and Mg-hydroxide, and a leachate bearing metals during electrochemical desilication provides the basis for further tuning the physicochemical parameters to improve the energy and material efficiency of these pathways. To address the slow kinetics of CO capture and mineralization starting from ultradilute emissions, reactive capture pathways that harness solvents such as Na-glycinate are shown to be effective. The extents of carbon mineralization of Ca(OH) and Mg(OH) are 97% and 78% using CO-loaded Na-glycinate upon reacting for 3 h at 90 °C. During the regeneration of Ca- and Mg-hydroxide and high-purity CO from carbonate sources, charge efficiencies of as high as 95% were observed for the dissolution of MgCO and CaCO while stirring at 100 rpm. Higher yields of Mg(OH) are observed compared to that for Ca(OH) during sorbent regeneration due to the lower solubility of Mg(OH). These findings provide the scientific basis for further tuning these reactive crystallization pathways for closing material and carbon cycles to advance a sustainable climate, energy, and environmental future.
概述
实现碳中和需要在能源和材料高效利用的途径上取得可扩展的进展,以捕获、转化、储存和去除空气中和烟道气中的人为二氧化碳排放,同时联产多种高价值产品。为此,可以利用地球上储量丰富的含钙和镁的碱性资源,通过电化学方法产生pH梯度,联产氢氧化钙、氢氧化镁、二氧化硅、氢气、氧气以及含有高价值金属的浸出液,这与现有的基于pH摆动的方法有很大不同。为了加速二氧化碳的捕获和矿化,使用溶剂捕获稀源中的二氧化碳以生产负载二氧化碳的溶剂。负载二氧化碳的溶剂与含钙和镁的氢氧化物反应生成碳酸钙和碳酸镁,同时使溶剂再生。这些碳酸盐可作为二氧化碳排放的临时或永久储存。当碳酸盐用作二氧化碳排放的临时储存时,可以利用电化学吸附剂再生途径生产高纯度二氧化碳,同时使氢氧化钙和氢氧化镁再生,并联产氢气和氧气。图1是这种综合方法的示意图。
调节这些碳转化反应结晶机制背后的分子尺度和纳米尺度相互作用,对于实现对这些途径的动力学、化学和形态控制至关重要。为此,确定了以下几点的可行性:(i)在地球上储量丰富的碱性工业废渣的电化学脱硅过程中结晶氢氧化钙和氢氧化镁;(ii)通过使用可再生溶剂加速碳酸钙和碳酸镁的转化,用于临时或永久碳储存;(iii)通过电化学方法再生氢氧化钙和氢氧化镁,同时联产高纯度二氧化碳、氧气和氢气。
在电化学脱硅过程中,非均相炉渣分馏联产二氧化硅、氢氧化钙和氢氧化镁以及含金属浸出液的证据,为进一步调整物理化学参数以提高这些途径的能源和材料效率提供了基础。为了解决从超稀排放开始的二氧化碳捕获和矿化动力学缓慢的问题,利用诸如甘氨酸钠等溶剂的反应性捕获途径被证明是有效的。在90℃下反应3小时后,使用负载二氧化碳的甘氨酸钠时,氢氧化钙和氢氧化镁的碳矿化程度分别为97%和78%。在从碳酸盐源再生氢氧化钙和氢氧化镁以及高纯度二氧化碳的过程中,在100 rpm搅拌时,碳酸镁和碳酸钙溶解的电荷效率高达95%。由于氢氧化镁的溶解度较低,在吸附剂再生过程中观察到氢氧化镁的产率高于氢氧化钙。这些发现为进一步调整这些反应结晶途径以闭合材料和碳循环,推动可持续的气候、能源和环境未来提供了科学依据。