整合网络分析提示优先考虑用于特应性皮炎的药物。
Integrative network analysis suggests prioritised drugs for atopic dermatitis.
机构信息
Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, 33100, Tampere, Finland.
Tampere Institute for Advanced Study, Tampere University, 33100, Tampere, Finland.
出版信息
J Transl Med. 2024 Jan 16;22(1):64. doi: 10.1186/s12967-024-04879-4.
BACKGROUND
Atopic dermatitis (AD) is a prevalent chronic inflammatory skin disease whose pathophysiology involves the interplay between genetic and environmental factors, ultimately leading to dysfunction of the epidermis. While several treatments are effective in symptom management, many existing therapies offer only temporary relief and often come with side effects. For this reason, the formulation of an effective therapeutic plan is challenging and there is a need for more effective and targeted treatments that address the root causes of the condition. Here, we hypothesise that modelling the complexity of the molecular buildup of the atopic dermatitis can be a concrete means to drive drug discovery.
METHODS
We preprocessed, harmonised and integrated publicly available transcriptomics datasets of lesional and non-lesional skin from AD patients. We inferred co-expression network models of both AD lesional and non-lesional skin and exploited their interactional properties by integrating them with a priori knowledge in order to extrapolate a robust AD disease module. Pharmacophore-based virtual screening was then utilised to build a tailored library of compounds potentially active for AD.
RESULTS
In this study, we identified a core disease module for AD, pinpointing known and unknown molecular determinants underlying the skin lesions. We identified skin- and immune-cell type signatures expressed by the disease module, and characterised the impaired cellular functions underlying the complex phenotype of atopic dermatitis. Therefore, by investigating the connectivity of genes belonging to the AD module, we prioritised novel putative biomarkers of the disease. Finally, we defined a tailored compound library by characterising the therapeutic potential of drugs targeting genes within the disease module to facilitate and tailor future drug discovery efforts towards novel pharmacological strategies for AD.
CONCLUSIONS
Overall, our study reveals a core disease module providing unprecedented information about genetic, transcriptional and pharmacological relationships that foster drug discovery in atopic dermatitis.
背景
特应性皮炎(AD)是一种常见的慢性炎症性皮肤病,其病理生理学涉及遗传和环境因素的相互作用,最终导致表皮功能障碍。虽然有几种治疗方法可以有效控制症状,但许多现有的治疗方法只能提供暂时的缓解,而且往往有副作用。因此,制定有效的治疗计划具有挑战性,需要更有效和有针对性的治疗方法来解决疾病的根本原因。在这里,我们假设模拟特应性皮炎分子结构的复杂性可以成为推动药物发现的具体手段。
方法
我们预处理、协调和整合了来自 AD 患者皮损和非皮损皮肤的公开转录组数据集。我们推断了 AD 皮损和非皮损皮肤的共表达网络模型,并通过与先验知识进行整合来利用它们的相互作用特性,以推断出一个稳健的 AD 疾病模块。然后利用基于药效团的虚拟筛选来构建一个针对 AD 的潜在活性化合物库。
结果
在这项研究中,我们确定了 AD 的核心疾病模块,确定了导致皮肤损伤的已知和未知分子决定因素。我们鉴定了疾病模块表达的皮肤和免疫细胞类型特征,并描述了特应性皮炎复杂表型背后受损的细胞功能。因此,通过研究属于 AD 模块的基因的连接性,我们优先确定了该疾病的新型潜在生物标志物。最后,我们通过描述靶向疾病模块内基因的药物的治疗潜力来定义一个定制的化合物库,以促进和定制针对 AD 的新型药理学策略的未来药物发现工作。
结论
总的来说,我们的研究揭示了一个核心疾病模块,提供了关于促进特应性皮炎药物发现的遗传、转录和药理学关系的前所未有的信息。
相似文献
J Transl Med. 2024-1-16
J Allergy Clin Immunol. 2015-1
Vet Dermatol. 2008-4
J Allergy Clin Immunol. 2014-4-29
引用本文的文献
Comput Struct Biotechnol J. 2025-6-6
本文引用的文献
Nat Nanotechnol. 2023-8
J Allergy Clin Immunol. 2023-5
Nucleic Acids Res. 2023-1-6
Nucleic Acids Res. 2023-1-6
Nucleic Acids Res. 2023-1-6
Acta Pharm Sin B. 2022-7
Nat Rev Dis Primers. 2022-7-14
J Allergy Clin Immunol. 2021-10