Hoppe Hannes, Manthe Uwe
Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany.
J Chem Phys. 2024 Jan 21;160(3). doi: 10.1063/5.0188748.
A new approach for the calculation of eigenstates with the state-averaged (multi-layer) multi-configurational time-dependent Hartree (MCTDH) approach is presented. The approach is inspired by the recent work of Larsson [J. Chem. Phys. 151, 204102 (2019)]. It employs local optimization of the basis sets at each node of the multi-layer MCTDH tree and successive downward and upward sweeps to obtain a globally converged result. At the top node, the Hamiltonian represented in the basis of the single-particle functions (SPFs) of the first layer is diagonalized. Here p wavefunctions corresponding to the p lowest eigenvalues are computed by a block Lanczos approach. At all other nodes, a non-linear operator consisting of the respective mean-field Hamiltonian matrix and a projector onto the space spanned by the respective SPFs is considered. Here, the eigenstate corresponding to the lowest eigenvalue is computed using a short iterative Lanczos scheme. Two different examples are studied to illustrate the new approach: the calculation of the vibrational states of methyl and acetonitrile. The calculations for methyl employ the single-layer MCTDH approach, a general potential energy surface, and the correlation discrete variable representation. A five-layer MCTDH representation and a sum of product-type Hamiltonian are used in the acetonitrile calculations. Very fast convergence and order of magnitude reductions in the numerical effort compared to the previously used block relaxation scheme are found. Furthermore, a detailed comparison with the results of Avila and Carrington [J. Chem. Phys. 134, 054126 (2011)] for acetonitrile highlights the potential problems of convergence tests for high-dimensional systems.
提出了一种用状态平均(多层)多组态含时Hartree(MCTDH)方法计算本征态的新方法。该方法受到Larsson近期工作[《化学物理杂志》151, 204102 (2019)]的启发。它在多层MCTDH树的每个节点采用基组的局部优化以及连续的向下和向上扫描以获得全局收敛结果。在顶层节点,以第一层单粒子函数(SPF)为基表示的哈密顿量被对角化。这里,通过块Lanczos方法计算对应于p个最低本征值的p个波函数。在所有其他节点,考虑一个由各自的平均场哈密顿矩阵和投影到各自SPF所张成空间上的投影算符组成的非线性算符。这里,使用短迭代Lanczos方案计算对应于最低本征值的本征态。研究了两个不同的例子来说明这种新方法:甲基和乙腈振动态的计算。甲基的计算采用单层MCTDH方法、一般的势能面和相关离散变量表示。乙腈的计算使用五层MCTDH表示和乘积型哈密顿量之和。与先前使用的块弛豫方案相比,发现收敛速度非常快且数值计算量减少了几个数量级。此外,与Avila和Carrington [《化学物理杂志》134, 054126 (2011)]关于乙腈的结果进行的详细比较突出了高维系统收敛测试的潜在问题。