Suppr超能文献

深度学习变分自编码器在视乳头水肿中视神经结构模式的可视化。

Visualization of Optic Nerve Structural Patterns in Papilledema Using Deep Learning Variational Autoencoders.

机构信息

Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA, USA.

Department of Ophthalmology and Visual Sciences, The University of Iowa Hospitals & Clinics, Iowa City, IA, USA.

出版信息

Transl Vis Sci Technol. 2024 Jan 2;13(1):13. doi: 10.1167/tvst.13.1.13.

Abstract

PURPOSE

To visualize and quantify structural patterns of optic nerve edema encountered in papilledema during treatment.

METHODS

A novel bi-channel deep-learning variational autoencoder (biVAE) model was trained using 1498 optical coherence tomography (OCT) scans of 125 subjects over time from the Idiopathic Intracranial Hypertension Treatment Trial (IIHTT) and 791 OCT scans of 96 control subjects from the University of Iowa. An independent test dataset of 70 eyes from 70 papilledema subjects was used to evaluate the ability of the biVAE model to quantify and reconstruct the papilledema spatial patterns from input OCT scans using only two variables.

RESULTS

The montage color maps of the retinal nerve fiber layer (RNFL) and total retinal thickness (TRT) produced by the biVAE model provided an organized visualization of the variety of morphological patterns of optic disc edema (including differing patterns at similar thickness levels). Treatment effects of acetazolamide versus placebo in the IIHTT were also demonstrated in the latent space. In image reconstruction, the mean signed peripapillary retinal nerve fiber layer thickness (pRNFLT) difference ± SD was -0.12 ± 17.34 µm, the absolute pRNFLT difference was 13.68 ± 10.65 µm, and the RNFL structural similarity index reached 0.91 ± 0.05.

CONCLUSIONS

A wide array of structural patterns of papilledema, integrating the magnitude of disc edema with underlying disc and retinal morphology, can be quantified by just two latent variables.

TRANSLATIONAL RELEVANCE

A biVAE model encodes structural patterns, as well as the correlation between channels, and may be applied to visualize individuals or populations with papilledema throughout treatment.

摘要

目的

可视化和量化治疗中视盘水肿时视神经水肿的结构模式。

方法

使用来自特发性颅内高压治疗试验(IIHTT)的 125 名受试者的 1498 次光学相干断层扫描(OCT)扫描和来自爱荷华大学的 96 名对照受试者的 791 次 OCT 扫描,训练一种新型双通道深度学习变分自编码器(biVAE)模型。使用 70 名视盘水肿受试者的 70 只眼的独立测试数据集,评估 biVAE 模型仅使用两个变量从输入 OCT 扫描定量和重建视盘水肿空间模式的能力。

结果

biVAE 模型生成的视网膜神经纤维层(RNFL)和总视网膜厚度(TRT)蒙太奇彩色图谱提供了视盘水肿形态模式的多种形态的组织化可视化(包括在相似厚度水平上的不同模式)。IIHTT 中的乙酰唑胺与安慰剂的治疗效果也在潜在空间中得到了证明。在图像重建中,平均每只眼的周边视网膜神经纤维层厚度(pRNFLT)差异的符号±标准差为-0.12±17.34 µm,绝对 pRNFLT 差异为 13.68±10.65 µm,RNFL 结构相似指数达到 0.91±0.05。

结论

仅用两个潜在变量即可量化视盘水肿的广泛结构模式,整合了盘水肿的程度与盘下结构和视网膜形态。

翻译

杨阳

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4db1/10795546/8a1f1d895fe5/tvst-13-1-13-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验