Department of Civil Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States.
Drinking Water Treatment and Distribution Branch, Water Infrastructure Division, Center for Environmental Solutions & Emergency Response, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States.
Environ Sci Technol. 2024 Jan 30;58(4):2048-2057. doi: 10.1021/acs.est.3c08088. Epub 2024 Jan 18.
In drinking water chloramination, monochloramine autodecomposition occurs in the presence of excess free ammonia through dichloramine, the decay of which was implicated in -nitrosodimethylamine (NDMA) formation by (i) dichloramine hydrolysis to nitroxyl which reacts with itself to nitrous oxide (NO), (ii) nitroxyl reaction with dissolved oxygen (DO) to peroxynitrite or mono/dichloramine to nitrogen gas (N), and (iii) peroxynitrite reaction with total dimethylamine (TOTDMA) to NDMA or decomposition to nitrite/nitrate. Here, the yields of nitrogen and oxygen-containing end-products were quantified at pH 9 from NHCl decomposition at 200, 400, or 800 μeq Cl·L with and without 10 μM-N TOTDMA under ambient DO (∼500 μM-O) and, to limit peroxynitrite formation, low DO (≤40 μM-O). Without TOTDMA, the sum of free ammonia, monochloramine, dichloramine, N, NO, nitrite, and nitrate indicated nitrogen recoveries ±95% confidence intervals were not significantly different under ambient (90 ± 6%) and low (93 ± 7%) DO. With TOTDMA, nitrogen recoveries were less under ambient (82 ± 5%) than low (97 ± 7%) DO. Oxygen recoveries under ambient DO were 88-97%, and the so-called unidentified product of dichloramine decomposition formed at about three-fold greater concentration under ambient compared to low DO, like NDMA, consistent with a DO limitation. Unidentified product formation stemmed from peroxynitrite decomposition products reacting with mono/dichloramine. For a 2:2:1 nitrogen/oxygen/chlorine atom ratio and its estimated molar absorptivity, unidentified product inclusion with uncertainty may close oxygen recoveries and increase nitrogen recoveries to 98% (ambient DO) and 100% (low DO).
在饮用水加氯消毒过程中,由于存在过量游离氨,一氯胺会自动分解生成二氯胺,这一过程被认为是 - 亚硝基二甲胺(NDMA)形成的原因之一:(i)二氯胺水解生成亚硝酰,后者与自身反应生成一氧化二氮(NO);(ii)亚硝酰与溶解氧(DO)反应生成过氧亚硝酸根或一氯胺/二氯胺生成氮气(N);(iii)过氧亚硝酸根与总二甲胺(TOTDMA)反应生成 NDMA 或分解为亚硝酸盐/硝酸盐。在本研究中,在 pH 9 条件下,在 200、400 或 800 μeq Cl·L 的 NHCl 分解条件下,研究了有无 10 μM-N TOTDMA 存在时,环境 DO(约 500 μM-O)条件下和为了限制过氧亚硝酸根生成而采用的低 DO(≤40 μM-O)条件下,氮和含氧终产物的产率。在没有 TOTDMA 的情况下,在环境 DO(90 ± 6%)和低 DO(93 ± 7%)条件下,自由氨、一氯胺、二氯胺、N、NO、亚硝酸盐和硝酸盐的总和表明氮回收率的置信区间不低于 95%,没有显著差异。在有 TOTDMA 的情况下,环境 DO(82 ± 5%)条件下的氮回收率低于低 DO(97 ± 7%)条件下的氮回收率。在环境 DO 条件下,氧回收率为 88-97%,与低 DO 相比,二氯胺分解形成的所谓未鉴定产物在环境 DO 下的浓度增加了约三倍,与 DO 限制一致。未鉴定产物的形成源于过氧亚硝酸根分解产物与一氯胺/二氯胺的反应。对于 2:2:1 的氮/氧/氯原子比及其估计的摩尔吸光率,如果将未鉴定产物包含在内并考虑其不确定性,可能会使氧回收率接近 100%(低 DO),并使氮回收率增加到 98%(环境 DO)和 100%(低 DO)。