Liu Ruixian, Zhang Wenliang, Wei Yuan, Tao Zhen, Asmara Teguh C, Li Yi, Strocov Vladimir N, Yu Rong, Si Qimiao, Schmitt Thorsten, Lu Xingye
Center for Advanced Quantum Studies and Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China.
Photon Science Division, Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland.
Phys Rev Lett. 2024 Jan 5;132(1):016501. doi: 10.1103/PhysRevLett.132.016501.
We use resonant inelastic x-ray scattering (RIXS) at the Fe-L_{3} edge to study the spin excitations of uniaxial-strained and unstrained FeSe_{1-x}S_{x} (0≤x≤0.21) samples. The measurements on unstrained samples reveal dispersive spin excitations in all doping levels, which show only minor doping dependence in energy dispersion, lifetime, and intensity, indicating that high-energy spin excitations are only marginally affected by sulfur doping. RIXS measurements on uniaxial-strained samples reveal that the high-energy spin-excitation anisotropy observed previously in FeSe is also present in the doping range 0<x≤0.21 of FeSe_{1-x}S_{x}. The spin-excitation anisotropy persists to a high temperature up to T>200 K in x=0.18 and reaches a maximum around the nematic quantum critical doping (x_{c}≈0.17). Since the spin-excitation anisotropy directly reflects the existence of nematic spin correlations, our results indicate that high-energy nematic spin correlations pervade the regime of nematicity in the phase diagram and are enhanced by the nematic quantum criticality. These results emphasize the essential role of spin fluctuations in driving electronic nematicity and highlight the capability of uniaxial strain in tuning spin excitations in quantum materials hosting strong magnetoelastic coupling and electronic nematicity.
我们利用铁L₃边的共振非弹性X射线散射(RIXS)来研究单轴应变和未应变的FeSe₁₋ₓSₓ(0≤x≤0.21)样品的自旋激发。对未应变样品的测量揭示了所有掺杂水平下的色散自旋激发,其在能量色散、寿命和强度方面仅显示出轻微的掺杂依赖性,这表明高能自旋激发仅受到硫掺杂的微弱影响。对单轴应变样品的RIXS测量表明,先前在FeSe中观察到的高能自旋激发各向异性也存在于FeSe₁₋ₓSₓ的0<x≤0.21掺杂范围内。在x = 0.18时,自旋激发各向异性在高达T>200 K的高温下仍然存在,并在向列量子临界掺杂(xₑ≈0.17)附近达到最大值。由于自旋激发各向异性直接反映了向列自旋相关性的存在,我们的结果表明高能向列自旋相关性贯穿相图中的向列相区域,并因向列量子临界性而增强。这些结果强调了自旋涨落在驱动电子向列性中的重要作用,并突出了单轴应变在调节具有强磁弹性耦合和电子向列性的量子材料中的自旋激发的能力。