Suppr超能文献

用于总能双分布函数动力学模型初始化的一致提升关系。

Consistent lifting relations for the initialization of total-energy double-distribution-function kinetic models.

作者信息

Qi Yiming, Wang Lian-Ping, Guo Zhaoli, Chen Shiyi

机构信息

State Key Laboratory for Turbulence and Complex Systems, College of engineering, Peking University, Beijing 100871, China.

Guangdong Provincial Key Laboratory of Turbulence Research and Applications, Center for Complex Flows and Soft Matter Research and Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.

出版信息

Phys Rev E. 2023 Dec;108(6-2):065301. doi: 10.1103/PhysRevE.108.065301.

Abstract

A lifting relation connecting the distribution function explicitly with the hydrodynamic variables is necessary for the Boltzmann equation-based mesoscopic approaches in order to correctly initialize a nonuniform hydrodynamic flow. We derive two lifting relations for Guo et al.'s total-energy double-distribution-function (DDF) kinetic model [Z. L. Guo et al., Phys. Rev. E 75, 036704 (2007)1539-375510.1103/PhysRevE.75.036704], one from the Hermite expansion of the conserved and nonconserved moments, and the second from the O(τ) Chapman-Enskog (CE) approximation of the Maxwellian exponential equilibrium. While both forms are consistent to the compressible Navier-Stokes-Fourier system theoretically, we stress that the latter may introduce numerical oscillations under the recently optimized discrete velocity models [Y. M. Qi et al., Phys. Fluids 34, 116101 (2022)10.1063/5.0120490], namely a 27 discrete velocity model of the seventh-order Gauss-Hermite quadrature (GHQ) accuracy (D3V27A7) for the velocity field combined with a 13 discrete velocity model of the fifth-order GHQ accuracy (D3V13A5) for the total energy. It is shown that the Hermite-expansion-based lifting relation can be alternatively derived from the latter approach using the truncated Hermite-polynomial equilibrium. Additionally, a relationship between the order of CE expansions and the truncated order of Hermite equilibria is developed to determine the minimal order of a Hermite equilibria required to recover any multiple-timescale macroscopic system. Next, three-dimensional compressible Taylor-Green vortex flows with different initial conditions and Ma numbers are simulated to demonstrate the effectiveness and potential issues of these lifting relations. The Hermite-expansion-based lifting relation works well in all cases, while the Chapman-Enskog-expansion-based lifting relation may produce numerical oscillations and a theoretical model is developed to predict such oscillations. Furthermore, the corresponding lifting relations for Qi et al.'s total energy DDF model [Y. M. Qi et al., Phys. Fluids 34, 116101 (2022)10.1063/5.0120490] are derived, and additional simulations are performed to illustrate the generality of our approach.

摘要

对于基于玻尔兹曼方程的介观方法而言,为了正确初始化非均匀流体动力学流,需要一个将分布函数与流体动力学变量明确联系起来的提升关系。我们为郭等人的总能双分布函数(DDF)动力学模型[Z. L. Guo等人,《物理评论E》75,036704(2007)1539 - 375510.1103/PhysRevE.75.036704]推导了两个提升关系,一个来自守恒和非守恒矩的厄米特展开,另一个来自麦克斯韦指数平衡的O(τ)查普曼 - 恩斯科格(CE)近似。虽然这两种形式在理论上都与可压缩的纳维 - 斯托克斯 - 傅里叶系统一致,但我们强调,在最近优化的离散速度模型[Y. M. Qi等人,《物理流体》34,116101(2022)10.1063/5.0120490]下,后者可能会引入数值振荡,即用于速度场的七阶高斯 - 厄米特求积(GHQ)精度的27离散速度模型(D3V27A7)与用于总能的五阶GHQ精度的13离散速度模型(D3V13A5)相结合。结果表明,基于厄米特展开的提升关系可以使用截断的厄米特多项式平衡从后一种方法中推导出来。此外,还建立了CE展开阶数与厄米特平衡截断阶数之间的关系,以确定恢复任何多时间尺度宏观系统所需的厄米特平衡的最小阶数。接下来,对具有不同初始条件和马赫数的三维可压缩泰勒 - 格林涡旋流进行了模拟,以证明这些提升关系的有效性和潜在问题。基于厄米特展开的提升关系在所有情况下都运行良好,而基于查普曼 - 恩斯科格展开的提升关系可能会产生数值振荡,并开发了一个理论模型来预测这种振荡。此外,还推导了齐等人的总能DDF模型[Y. M. Qi等人,《物理流体》34,116101(2022)10.1063/5.0120490]的相应提升关系,并进行了额外的模拟以说明我们方法的通用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验