Carrasco Ismael S S, To Tung B T, Reis Fábio D A Aarão
International Center of Physics, Institute of Physics, University of Brasilia, 70910-900 Brasilia, Federal District, Brazil.
Instituto de Física, Universidade Federal Fluminense, Avenida Litorânea s/n, 24210-340 Niterói, Rio de Janeiro, Brazil.
Phys Rev E. 2023 Dec;108(6-1):064802. doi: 10.1103/PhysRevE.108.064802.
We perform kinetic Monte Carlo simulations of film growth in simple cubic lattices with solid-on-solid conditions, Ehrlich-Schwoebel (ES) barriers at step edges, and a kinetic barrier related to the hidden off-plane diffusion at multilayer steps. Broad ranges of the diffusion-to-deposition ratio R, detachment probability per lateral neighbor, ε, and monolayer step crossing probability P=exp[-E_{ES}/(k_{B}T)] are studied. Without the ES barrier, four possible scaling regimes are shown as the coverage θ increases: nearly layer-by-layer growth with damped roughness oscillations; kinetic roughening in the Villain-Lai-Das Sarma (VLDS) universality class when the roughness is W∼1 (in lattice units); unstable roughening with mound nucleation and growth, where slopes of logW×logθ plots reach values larger than 0.5; and asymptotic statistical growth with W=θ^{1/2} solely due to the kinetic barrier at multilayer steps. If the ES barrier is present, the layer-by-layer growth crosses over directly to the unstable regime, with no transient VLDS scaling. However, in simulations up to θ=10^{4} (typical of films with a few micrometers), low temperatures (small R, ε, or P) may suppress the two or three initial regimes, while high temperatures and P∼1 produce smooth surfaces at all thicknesses. These crossovers help to explain proposals of nonuniversal exponents in previous works. We define a smooth film thickness θ_{c} where W=1 and show that VLDS scaling at that point indicates negligible ES barriers, while rapidly increasing roughness indicates a small ES barrier (E_{ES}∼k_{B}T). θ_{c} scales as ∼exp(const×P^{2/3}) if the other parameters are kept fixed, which represents a high sensitivity on the ES barrier. The analysis of recent experimental data in the light of our results distinguishes cases where E_{ES}/(k_{B}T) is negligible, ∼1, or ≪1.
我们进行了动力学蒙特卡罗模拟,研究了在简单立方晶格中的薄膜生长情况,该模拟考虑了固 - 固条件、台阶边缘处的埃利希 - 施沃贝尔(ES)势垒以及与多层台阶处隐藏的面外扩散相关的动力学势垒。研究了扩散与沉积比(R)、每个横向邻居的脱离概率(\varepsilon)以及单层台阶穿越概率(P = \exp[-E_{ES}/(k_{B}T)])的广泛范围。在没有ES势垒的情况下,随着覆盖率(\theta)的增加,展示了四种可能的标度律:具有衰减粗糙度振荡的近层状生长;当粗糙度(W \sim 1)(以晶格单位计)时,属于Villain - Lai - Das Sarma(VLDS)普适类的动力学粗糙化;具有丘状成核和生长的不稳定粗糙化,其中(\log W \times \log \theta)图的斜率达到大于(0.5)的值;以及仅由于多层台阶处的动力学势垒导致的(W = \theta^{1/2})的渐近统计生长。如果存在ES势垒,层状生长会直接转变为不稳定状态,不存在瞬态VLDS标度。然而,在高达(\theta = 10^{4})(典型的几微米厚的薄膜)的模拟中,低温(小的(R)、(\varepsilon)或(P))可能会抑制最初的两种或三种状态,而高温和(P \sim 1)会在所有厚度下产生光滑表面。这些转变有助于解释先前工作中关于非普适指数的提议。我们定义了一个光滑薄膜厚度(\theta_{c}),此时(W = 1),并表明在该点的VLDS标度表明ES势垒可忽略不计,而粗糙度迅速增加表明ES势垒较小((E_{ES} \sim k_{B}T))。如果其他参数保持固定,(\theta_{c})的标度为(\sim \exp(const \times P^{2/3})),这表示对ES势垒具有高灵敏度。根据我们的结果对最近的实验数据进行分析,可以区分(E_{ES}/(k_{B}T))可忽略不计、(\sim 1)或(\ll 1)的情况。