Suppr超能文献

非厄米场论中的时间反演与宇称-时间对称性破缺

Time-reversal and parity-time symmetry breaking in non-Hermitian field theories.

作者信息

Suchanek Thomas, Kroy Klaus, Loos Sarah A M

机构信息

Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, D-04009 Leipzig, Germany.

DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom.

出版信息

Phys Rev E. 2023 Dec;108(6-1):064123. doi: 10.1103/PhysRevE.108.064123.

Abstract

We study time-reversal symmetry breaking in non-Hermitian fluctuating field theories with conserved dynamics, comprising the mesoscopic descriptions of a wide range of nonequilibrium phenomena. They exhibit continuous parity-time (PT) symmetry-breaking phase transitions to dynamical phases. For two concrete transition scenarios, exclusive to non-Hermitian dynamics, namely, oscillatory instabilities and critical exceptional points, a low-noise expansion exposes a pretransitional surge of the mesoscale (informatic) entropy production rate, inside the static phases. Its scaling in the susceptibility contrasts conventional critical points (such as second-order phase transitions), where the susceptibility also diverges, but the entropy production generally remains finite. The difference can be attributed to active fluctuations in the wavelengths that become unstable. For critical exceptional points, we identify the coupling of eigenmodes as the entropy-generating mechanism, causing a drastic noise amplification in the Goldstone mode.

摘要

我们研究具有守恒动力学的非厄米涨落场论中的时间反演对称性破缺,其中包括对广泛的非平衡现象的介观描述。它们表现出连续的宇称时间(PT)对称性破缺相变到动力学相。对于非厄米动力学特有的两种具体转变情形,即振荡不稳定性和临界例外点,低噪声展开揭示了静态相内部中尺度(信息)熵产生率的预过渡激增。其在磁化率中的标度与传统临界点(如二阶相变)形成对比,在传统临界点处磁化率也发散,但熵产生通常保持有限。这种差异可归因于波长中变得不稳定的有源涨落。对于临界例外点,我们将本征模的耦合确定为熵产生机制,导致戈德斯通模中的剧烈噪声放大。

相似文献

1
Time-reversal and parity-time symmetry breaking in non-Hermitian field theories.
Phys Rev E. 2023 Dec;108(6-1):064123. doi: 10.1103/PhysRevE.108.064123.
2
Irreversible Mesoscale Fluctuations Herald the Emergence of Dynamical Phases.
Phys Rev Lett. 2023 Dec 22;131(25):258302. doi: 10.1103/PhysRevLett.131.258302.
3
Entropy production in the nonreciprocal Cahn-Hilliard model.
Phys Rev E. 2023 Dec;108(6-1):064610. doi: 10.1103/PhysRevE.108.064610.
4
5
Non-Hermitian chiral phononics through optomechanically induced squeezing.
Nature. 2022 Jun;606(7912):82-87. doi: 10.1038/s41586-022-04609-0. Epub 2022 Jun 1.
6
Homotopy, symmetry, and non-Hermitian band topology.
Rep Prog Phys. 2024 Jul 3;87(7). doi: 10.1088/1361-6633/ad4e64.
7
Designing plasmonic exceptional points by transformation optics.
Opt Express. 2021 May 24;29(11):16046-16055. doi: 10.1364/OE.415323.
8
Vorticity wave interaction, Krein collision, and exceptional points in shear flow instabilities.
Phys Rev E. 2023 Dec;108(6-2):065109. doi: 10.1103/PhysRevE.108.065109.
9
Topological triple phase transition in non-Hermitian Floquet quasicrystals.
Nature. 2022 Jan;601(7893):354-359. doi: 10.1038/s41586-021-04253-0. Epub 2022 Jan 19.
10
Observation of Non-Bloch Parity-Time Symmetry and Exceptional Points.
Phys Rev Lett. 2021 Jun 11;126(23):230402. doi: 10.1103/PhysRevLett.126.230402.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验