Sadhukhan Arnab, Karmakar Arun, Koner Kalipada, Karak Shayan, Sharma Rahul Kumar, Roy Avishek, Sen Prince, Dey Krishna Kishor, Mahalingam Venkataramanan, Pathak Biswarup, Kundu Subrata, Banerjee Rahul
Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India.
Centre for Advance Functional Materials, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India.
Adv Mater. 2024 May;36(18):e2310938. doi: 10.1002/adma.202310938. Epub 2024 Jan 28.
The development of metal-free bifunctional electrocatalysts for hydrogen and oxygen evolution reactions (HER and OER) is significant but rarely demonstrated. Porous organic polymers (POPs) with well-defined electroactive functionalities show superior performance in hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Precise control of the active sites' local environment requires careful modulation of linkers through the judicious selection of building units. Here, a systematic strategy is introduced for modulating functionality to design and synthesize a series of thianthrene-based bifunctional sp C═C bonded POPs with hollow spherical morphologies exhibiting superior electrocatalytic activity. This precise structural tuning allowed to gain insight into the effects of heteroatom incorporation, hydrophilicity, and variations in linker length on electrocatalytic activity. The most efficient bifunctional electrocatalyst THT-PyDAN achieves a current density of 10 mA cm at an overpotential (η) of ≈65 mV (in 0.5 m HSO) and ≈283 mV (in 1 m KOH) for HER and OER, respectively. THT-PyDAN exhibits superior activity to all previously reported metal-free bifunctional electrocatalysts in the literature. Furthermore, these investigations demonstrate that THT-PyDAN maintains its performance even after 36 h of chronoamperometry and 1000 CV cycling. Post-catalytic characterization using FT-IR, XPS, and microscopic imaging techniques underscores the long-term durability of THT-PyDAN.
用于析氢反应(HER)和析氧反应(OER)的无金属双功能电催化剂的开发意义重大,但鲜有报道。具有明确电活性官能团的多孔有机聚合物(POPs)在析氢反应(HER)和析氧反应(OER)中表现出优异的性能。要精确控制活性位点的局部环境,需要通过明智地选择构建单元来仔细调节连接基。在此,我们引入了一种系统策略来调节官能团,以设计和合成一系列具有中空球形形态的基于噻蒽的双功能sp C═C键合POPs,这些材料表现出优异的电催化活性。这种精确的结构调整使我们能够深入了解杂原子掺入、亲水性以及连接基长度变化对电催化活性的影响。最有效的双功能电催化剂THT-PyDAN在析氢反应(HER)和析氧反应(OER)中,分别在约65 mV(在0.5 m HSO中)和约283 mV(在1 m KOH中)的过电位(η)下实现了10 mA cm的电流密度。THT-PyDAN对文献中所有先前报道的无金属双功能电催化剂都表现出优异的活性。此外,这些研究表明,即使在进行36小时的计时电流法和1000次循环伏安循环后,THT-PyDAN仍能保持其性能。使用傅里叶变换红外光谱(FT-IR)、X射线光电子能谱(XPS)和显微镜成像技术进行的催化后表征强调了THT-PyDAN的长期耐久性。