Chang Hsiao-Huang, Hou Kai-Hsiang, Chiang Ting-Wei, Wang Yi-Min, Sun Chia-Wei
Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
Bioengineering (Basel). 2023 Dec 26;11(1):26. doi: 10.3390/bioengineering11010026.
Extracorporeal membrane oxygenation (ECMO) is a vital emergency procedure providing respiratory and circulatory support to critically ill patients, especially those with compromised cardiopulmonary function. Its use has grown due to technological advances and clinical demand. Prolonged ECMO usage can lead to complications, necessitating the timely assessment of peripheral microcirculation for an accurate physiological evaluation. This study utilizes non-invasive near-infrared spectroscopy (NIRS) to monitor knee-level microcirculation in ECMO patients. After processing oxygenation data, machine learning distinguishes high and low disease severity in the veno-venous (VV-ECMO) and veno-arterial (VA-ECMO) groups, with two clinical parameters enhancing the model performance. Both ECMO modes show promise in the clinical severity diagnosis. The research further explores statistical correlations between the oxygenation data and disease severity in diverse physiological conditions, revealing moderate correlations with the acute physiologic and chronic health evaluation (APACHE II) scores in the VV-ECMO and VA-ECMO groups. NIRS holds the potential for assessing patient condition improvements.
体外膜肺氧合(ECMO)是一种重要的急救程序,为重症患者,尤其是心肺功能受损的患者提供呼吸和循环支持。由于技术进步和临床需求,其应用有所增加。长时间使用ECMO会导致并发症,因此需要及时评估外周微循环以进行准确的生理评估。本研究利用无创近红外光谱(NIRS)监测接受ECMO治疗患者的膝部水平微循环。在处理氧合数据后,机器学习可区分静脉 - 静脉(VV - ECMO)和静脉 - 动脉(VA - ECMO)组中的疾病严重程度高低,有两个临床参数可提高模型性能。两种ECMO模式在临床严重程度诊断方面都显示出前景。该研究进一步探索了不同生理条件下氧合数据与疾病严重程度之间的统计相关性,揭示了在VV - ECMO和VA - ECMO组中与急性生理和慢性健康评估(APACHE II)评分存在中度相关性。NIRS具有评估患者病情改善情况的潜力。