Suppr超能文献

利用功能近红外光谱的信号特征评估体外膜肺氧合患者的急性生理评分

Using Signal Features of Functional Near-Infrared Spectroscopy for Acute Physiological Score Estimation in ECMO Patients.

作者信息

Chang Hsiao-Huang, Hou Kai-Hsiang, Chiang Ting-Wei, Wang Yi-Min, Sun Chia-Wei

机构信息

Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan.

Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.

出版信息

Bioengineering (Basel). 2023 Dec 26;11(1):26. doi: 10.3390/bioengineering11010026.

Abstract

Extracorporeal membrane oxygenation (ECMO) is a vital emergency procedure providing respiratory and circulatory support to critically ill patients, especially those with compromised cardiopulmonary function. Its use has grown due to technological advances and clinical demand. Prolonged ECMO usage can lead to complications, necessitating the timely assessment of peripheral microcirculation for an accurate physiological evaluation. This study utilizes non-invasive near-infrared spectroscopy (NIRS) to monitor knee-level microcirculation in ECMO patients. After processing oxygenation data, machine learning distinguishes high and low disease severity in the veno-venous (VV-ECMO) and veno-arterial (VA-ECMO) groups, with two clinical parameters enhancing the model performance. Both ECMO modes show promise in the clinical severity diagnosis. The research further explores statistical correlations between the oxygenation data and disease severity in diverse physiological conditions, revealing moderate correlations with the acute physiologic and chronic health evaluation (APACHE II) scores in the VV-ECMO and VA-ECMO groups. NIRS holds the potential for assessing patient condition improvements.

摘要

体外膜肺氧合(ECMO)是一种重要的急救程序,为重症患者,尤其是心肺功能受损的患者提供呼吸和循环支持。由于技术进步和临床需求,其应用有所增加。长时间使用ECMO会导致并发症,因此需要及时评估外周微循环以进行准确的生理评估。本研究利用无创近红外光谱(NIRS)监测接受ECMO治疗患者的膝部水平微循环。在处理氧合数据后,机器学习可区分静脉 - 静脉(VV - ECMO)和静脉 - 动脉(VA - ECMO)组中的疾病严重程度高低,有两个临床参数可提高模型性能。两种ECMO模式在临床严重程度诊断方面都显示出前景。该研究进一步探索了不同生理条件下氧合数据与疾病严重程度之间的统计相关性,揭示了在VV - ECMO和VA - ECMO组中与急性生理和慢性健康评估(APACHE II)评分存在中度相关性。NIRS具有评估患者病情改善情况的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b04c/10813775/cbcf1f14a486/bioengineering-11-00026-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验