Lebovich Matthew, Lora Marcos A, Gracia-David Jared, Andrews Lauren B
Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA.
Biotechnology Training Program, University of Massachusetts Amherst, Amherst, MA 01003, USA.
Metabolites. 2024 Jan 11;14(1):44. doi: 10.3390/metabo14010044.
Engineered microorganisms such as the probiotic strain Nissle 1917 (EcN) offer a strategy to sense and modulate the concentration of metabolites or therapeutics in the gastrointestinal tract. Here, we present an approach to regulate the production of the depression-associated metabolite gamma-aminobutyric acid (GABA) in EcN using genetic circuits that implement negative feedback. We engineered EcN to produce GABA by overexpressing glutamate decarboxylase and applied an intracellular GABA biosensor to identify growth conditions that improve GABA biosynthesis. We next employed characterized genetically encoded NOT gates to construct genetic circuits with layered feedback to control the rate of GABA biosynthesis and the concentration of GABA produced. Looking ahead, this approach may be utilized to design feedback control of microbial metabolite biosynthesis to achieve designable smart microbes that act as living therapeutics.
工程微生物,如益生菌菌株Nissle 1917(EcN),为感知和调节胃肠道中代谢物或治疗剂的浓度提供了一种策略。在此,我们提出了一种方法,利用实施负反馈的遗传回路来调节EcN中与抑郁症相关的代谢物γ-氨基丁酸(GABA)的产生。我们通过过表达谷氨酸脱羧酶对EcN进行工程改造以产生GABA,并应用细胞内GABA生物传感器来确定改善GABA生物合成的生长条件。接下来,我们使用经过表征的基因编码非门构建具有分层反馈的遗传回路,以控制GABA生物合成的速率和产生的GABA浓度。展望未来,这种方法可用于设计微生物代谢物生物合成的反馈控制,以实现作为活体治疗剂的可设计智能微生物。