Suppr超能文献

基于耦合低秩子空间表示和自监督深度网络的高光谱压缩快照重建

Hyperspectral Compressive Snapshot Reconstruction via Coupled Low-Rank Subspace Representation and Self-Supervised Deep Network.

作者信息

Chen Yong, Lai Wenzhen, He Wei, Zhao Xi-Le, Zeng Jinshan

出版信息

IEEE Trans Image Process. 2024;33:926-941. doi: 10.1109/TIP.2024.3354127. Epub 2024 Jan 26.

Abstract

Coded aperture snapshot spectral imaging (CASSI) is an important technique for capturing three-dimensional (3D) hyperspectral images (HSIs), and involves an inverse problem of reconstructing the 3D HSI from its corresponding coded 2D measurements. Existing model-based and learning-based methods either could not explore the implicit feature of different HSIs or require a large amount of paired data for training, resulting in low reconstruction accuracy or poor generalization performance as well as interpretability. To remedy these deficiencies, this paper proposes a novel HSI reconstruction method, which exploits the global spectral correlation from the HSI itself through a formulation of model-driven low-rank subspace representation and learns the deep prior by a data-driven self-supervised deep learning scheme. Specifically, we firstly develop a model-driven low-rank subspace representation to decompose the HSI as the product of an orthogonal basis and a spatial representation coefficient, then propose a data-driven deep guided spatial-attention network (called DGSAN) to adaptively reconstruct the implicit spatial feature of HSI by learning the deep coefficient prior (DCP), and finally embed these implicit priors into an iterative optimization framework through a self-supervised training way without requiring any training data. Thus, the proposed method shall enhance the reconstruction accuracy, generalization ability, and interpretability. Extensive experiments on several datasets and imaging systems validate the superiority of our method. The source code and data of this article will be made publicly available at https://github.com/ChenYong1993/LRSDN.

摘要

编码孔径快照光谱成像(CASSI)是一种用于获取三维(3D)高光谱图像(HSI)的重要技术,它涉及从其相应的编码二维测量值重建3D HSI的逆问题。现有的基于模型和基于学习的方法要么无法探索不同HSI的隐含特征,要么需要大量配对数据进行训练,导致重建精度低、泛化性能差以及可解释性不足。为了弥补这些缺陷,本文提出了一种新颖的HSI重建方法,该方法通过模型驱动的低秩子空间表示公式利用HSI本身的全局光谱相关性,并通过数据驱动的自监督深度学习方案学习深度先验。具体来说,我们首先开发了一种模型驱动的低秩子空间表示,将HSI分解为正交基和空间表示系数的乘积,然后提出了一种数据驱动的深度引导空间注意力网络(称为DGSAN),通过学习深度系数先验(DCP)自适应地重建HSI的隐含空间特征,最后通过自监督训练方式将这些隐含先验嵌入到迭代优化框架中,而无需任何训练数据。因此,所提出的方法将提高重建精度、泛化能力和可解释性。在多个数据集和成像系统上进行的大量实验验证了我们方法的优越性。本文的源代码和数据将在https://github.com/ChenYong1993/LRSDN上公开提供。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验