Han Xile, Zhong Hai, Li Kaiwei, Xue Xiaobin, Wu Wen, Hu Nan, Lu Xihong, Huang Jiaqiang, Xiao Gaozhi, Mai Yaohua, Guo Tuan
Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China.
Institute of New Energy Technology, College of Information Science and Technology, Jinan University, Guangzhou, 510632, China.
Light Sci Appl. 2024 Jan 22;13(1):24. doi: 10.1038/s41377-023-01346-5.
Lithium (Li) dendrite growth significantly deteriorates the performance and shortens the operation life of lithium metal batteries. Capturing the intricate dynamics of surface localized and rapid mass transport at the electrolyte-electrode interface of lithium metal is essential for the understanding of the dendrite growth process, and the evaluation of the solutions mitigating the dendrite growth issue. Here we demonstrate an approach based on an ultrasensitive tilted fiber Bragg grating (TFBG) sensor which is inserted close to the electrode surface in a working lithium metal battery, without disturbing its operation. Thanks to the superfine optical resonances of the TFBG, in situ and rapid monitoring of mass transport kinetics and lithium dendrite growth at the nanoscale interface of lithium anodes have been achieved. Reliable correlations between the performance of different natural/artificial solid electrolyte interphases (SEIs) and the time-resolved optical responses have been observed and quantified, enabling us to link the nanoscale ion and SEI behavior with the macroscopic battery performance. This new operando tool will provide additional capabilities for parametrization of the batteries' electrochemistry and help identify the optimal interphases of lithium metal batteries to enhance battery performance and its safety.
锂枝晶生长会显著降低锂金属电池的性能并缩短其使用寿命。掌握锂金属电解质 - 电极界面处复杂的表面局部及快速质量传输动力学,对于理解枝晶生长过程以及评估缓解枝晶生长问题的解决方案至关重要。在此,我们展示了一种基于超灵敏倾斜光纤布拉格光栅(TFBG)传感器的方法,该传感器在工作的锂金属电池中靠近电极表面插入,而不干扰其运行。得益于TFBG的超精细光学共振,已实现对锂阳极纳米级界面处质量传输动力学和锂枝晶生长的原位快速监测。已观察并量化了不同天然/人工固体电解质界面(SEI)的性能与时间分辨光学响应之间的可靠相关性,使我们能够将纳米级离子和SEI行为与宏观电池性能联系起来。这种新的原位操作工具将为电池电化学参数化提供更多能力,并有助于确定锂金属电池的最佳界面,以提高电池性能及其安全性。