Horitani Masaki, Yamada Risa, Taroura Kanami, Maeda Akari, Anai Toyoaki, Watanabe Satoshi
Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan.
Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
Plants (Basel). 2024 Jan 5;13(2):156. doi: 10.3390/plants13020156.
Soybean ( (L.) Merrill) isoflavones are among the most important secondary metabolites, with functional benefits for human health. Soybeans accumulate three aglycone forms of isoflavones: genistein, daidzein, and glycitein. Soybean landrace Kumachi-1 does not accumulate malonylglycitin at all. Gene structure analysis indicated that () of Kumachi-1 has a 3.8-kbp insertion, resulting in a truncated flavonoid 6-hydroxylase () sequence compared to the wild-type sequence in Fukuyutaka. Mapping experiments using a mutant line (MUT1246) with a phenotype similar to that of Kumachi-1, with a single-nucleotide polymorphism (SNP) in , revealed co-segregation of this mutation and the absence of glycitein isoflavones. We also identified a mutant line (K01) that exhibited a change in the HPLC retention time of glycitein isoflavones, accumulating glycoside and malonylglycoside forms of 6-hydroxydaidzein. K01 contains an SNP that produces a premature stop codon in (), a novel soybean isoflavone O-methyltransferase () gene. We further analyzed transgenic hairy roots of soybeans expressing () and (). Those overexpressing accumulated malonylglycoside forms of 6-hydroxydaidzein (M_6HD), and co-expression of and increased the level of malonylglycitin but not of M_6HD. These results indicate that and are responsible for glycitein biosynthesis in soybean seed hypocotyl.
大豆((L.) Merrill)异黄酮是最重要的次生代谢产物之一,对人体健康具有功能性益处。大豆积累三种异黄酮苷元形式:染料木黄酮、大豆苷元和黄豆黄素。大豆地方品种熊知1号根本不积累丙二酰黄豆黄素。基因结构分析表明,熊知1号的()有一个3.8千碱基对的插入,与福丰型的野生型序列相比,导致类黄酮6-羟化酶()序列截短。使用与熊知1号表型相似、在()中有单核苷酸多态性(SNP)的突变系(MUT1246)进行的定位实验表明,该突变与黄豆黄素异黄酮的缺失共分离。我们还鉴定出一个突变系(K01),其黄豆黄素异黄酮的高效液相色谱保留时间发生了变化,积累了6-羟基大豆苷的糖苷和丙二酰糖苷形式。K01包含一个SNP,该SNP在()中产生一个提前终止密码子,()是一个新的大豆异黄酮O-甲基转移酶基因。我们进一步分析了表达()和()的转基因大豆毛状根。过量表达()的植株积累了6-羟基大豆苷的丙二酰糖苷形式(M_6HD),()和()的共表达增加了丙二酰黄豆黄素的水平,但没有增加M_6HD的水平。这些结果表明,()和()负责大豆种子下胚轴中黄豆黄素的生物合成。